Application of BaTiO3 Perovskite Material for Piezoelectric Multilayer Actuators

  • Magdalena Gromada
  • Mojtaba Biglar
  • Tomasz Trzepiecinski
  • Feliks Stachowicz
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 428)


In this paper, the results of the manufacturing of BaTiO3 material destined for use in stacked-disk multilayer actuator production are presented. SEM microstructures and electric properties of the fabricated pellets are presented and discussed. The dilatometric curve was executed using the high temperature dilatometer in order to determine at which temperature barium titanate pellets and beams should be sintered to receive full dense sinters. Finally, the problem of metal layer deposition on barium titanate ceramics during actuator fabrication is considered.


Barium titanate Piezoelectric properties Multilayer actuator 



The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/under REA grant agreement No. PITN-GA-2013-606878.


  1. 1.
    Zhao, Z., Buscaglia, V., Viviani, M., Buscaglia, M.T., Mitoseriu, L., Testino, A., Nygren, M., Johnsson, M., Nanni, P.: Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics. Phys. Rev. B. 70, 024107 (2004)CrossRefGoogle Scholar
  2. 2.
    Hu, J., Shen, Z.: Intragranular heterojunctions formed by ordered coalescence of strontium and barium titanate nanocrystals. Scr. Mater. 107, 14–17 (2015)CrossRefGoogle Scholar
  3. 3.
    Cai, W., Fu, C., Lin, Z., Deng, X.: Vanadium doping effects on microstructure and dielectric properties of barium titanate ceramics. Ceram. Int. 37, 3643–3650 (2011)CrossRefGoogle Scholar
  4. 4.
    Yu, P., Wang, X., Cui, B.: Preparation and characterization of BaTiO3 powders and ceramics by the Sol-Gel process using organic monoacid as surfactant. Scr. Mater. 57, 623–626 (2007)CrossRefGoogle Scholar
  5. 5.
    Kao, C.F., Yang, W.D.: Preparation of barium strontium titanate powder from citrate precursor. Appl. Organomet. Chem. 13, 383–397 (1999)CrossRefGoogle Scholar
  6. 6.
    Chen, J.F., Shen, Z.G., Liu, F.T., Liu, X.L., Yun, J.: Preparation and properties of barium titanate nanopowder by conventional and high-gravity reactive precipitation methods. Scr. Mater. 49, 509–514 (2003)CrossRefGoogle Scholar
  7. 7.
    Park, J.H., Yoo, D.H., Kim, C.S., Yang, H.S., Moon, B.K., Jung, G.J., Jeong, E.D., Hong, K.S.: Synthesis, structure and dielectric properties of BaTiO3 nanoparticles. J. Korean Phys. Soc. 49, S680–S683 (2006)Google Scholar
  8. 8.
    Koops, C.G.: On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121–124 (1951)CrossRefGoogle Scholar
  9. 9.
    Batoo, K.M., Kumar, S., Lee, C.G., Alimuddin.: Influence of Al doping on electrical properties of Ni–Cd nano ferrites. Curr. Appl. Phys. 9, 826–832 (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Magdalena Gromada
    • 1
  • Mojtaba Biglar
    • 2
  • Tomasz Trzepiecinski
    • 2
  • Feliks Stachowicz
    • 2
  1. 1.Ceramic Department CERELInstitute of Power Engineering, Research InstituteBoguchwałaPoland
  2. 2.Department of Materials Forming and ProcessingRzeszow University of TechnologyRzeszówPoland

Personalised recommendations