Advertisement

On Computational Evaluation of Stress Concentration Using Micropolar Elasticity

  • Victor A. Eremeyev
  • Andrzej Skrzat
  • Feliks Stachowicz
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 428)

Abstract

We discuss the implementation the finite element approach to the linear micropolar elasticity in order to perform the analysis of the stress concentration near holes and notches. Within the micropolar elasticity we analyze the behaviour of such microstructured solids as foams and bones. With developed new finite element few problems are analyzed where the influence of the microstructure may be important. The provided comparison of solutions obtained within the micropolar and classical elasticity show the influence of micropolar properties on stress concentration near notches and contact areas.

Keywords

Cosserat continuum Micropolar elasticity FEM Stress concentration Porous media 

Notes

Acknowledgements

Authors acknowledge the support by the People Program (Marie Curie ITN transfer) of the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement No PITN-GA-2013-606878.

References

  1. 1.
    Ariman, T.: On the stresses around a circular hole in micropolar elasticity. Acta Mech. 4(3), 216–229 (1967)CrossRefzbMATHGoogle Scholar
  2. 2.
    dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. R. Soc. A 472(2185), 20150790 (2016)Google Scholar
  3. 3.
    Dos Reis, F., Ganghoffer, J.: Construction of micropolar continua from the asymptotic homogenization of beam lattices. Comput. Struct. 112, 354–363 (2012)CrossRefGoogle Scholar
  4. 4.
    Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group of the non-linear polar-elastic continuum. Int. J. Solids Struct. 49(14), 1993–2005 (2012)CrossRefGoogle Scholar
  5. 5.
    Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math. Mech. Solids 21(2), 210–221 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics. Springer, Heidelberg (2013)Google Scholar
  7. 7.
    Eringen, A.C.: Microcontinuum Field Theory. I. Foundations and Solids. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  8. 8.
    Goda, I., Ganghoffer, J.F.: Identification of couple-stress moduli of vertebral trabecular bone based on the 3d internal architectures. J. Mech. Behav. Biomed. Mater. 51, 99–118 (2015)CrossRefGoogle Scholar
  9. 9.
    Kaloni, P.N., Ariman, T.: Stress concentration effects in micropolar elasticity. ZAMP 18(1), 136–141 (1967)CrossRefGoogle Scholar
  10. 10.
    Lakes, R.: Experimental microelasticity of two porous solids. Int. J. Solids Struct. 22(1), 55–63 (1986)CrossRefGoogle Scholar
  11. 11.
    Salehi, S.H., Salehi, M.: Numerical investigation of nanoindentation size effect using micropolar theory. Acta Mech. 225(12), 3365–3376 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Trovalusci, P., Ostoja-Starzewski, M., De Bellis, M.L., Murrali, A.: Scale-dependent homogenization of random composites as micropolar continua. Eur. J. Mech. A/Solids 49, 396–407 (2015)CrossRefGoogle Scholar
  13. 13.
    Yang, J., Lakes, R.S.: Experimental study of micropolar and couple stress elasticity in compact bone in bending. J. Biomechanics 15(2), 91–98 (1982)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Victor A. Eremeyev
    • 1
  • Andrzej Skrzat
    • 1
  • Feliks Stachowicz
    • 1
  1. 1.Faculty of Mechanical Engineering and AeronauticsRzeszow University of TechnologyRzeszówPoland

Personalised recommendations