Bundling Two Simple Polygons to Minimize Their Convex Hull

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10167)

Abstract

Given two simple polygons P and Q in the plane, we study the problem of finding a placement \(\varphi P\) of P such that \(\varphi P\) and Q are disjoint in their interiors and the convex hull of their union is minimized. We present exact algorithms for this problem that use much less space than the complexity of the Minkowski sum of P and Q. When the orientation of P is fixed, we find an optimal translation of P in \(O(n^2m^2\log n)\) time using O(nm) space, where n and m (\(n\ge m\)) denote the number of edges of P and Q, respectively. When we allow reorienting P, we find an optimal rigid motion of P in \(O(n^3m^3\log n)\) time using O(nm) space. In both cases, we find an optimal placement of P using linear space at the expense of slightly increased running time. For two polyhedra in three dimensional space, we find an optimal translation in \(O(n^3m^3 \log n)\) time using O(nm) space or in \(O(n^3m^3(m+\log n))\) time using linear space.

References

  1. 1.
    Ahn, H.K., Cheong, O.: Aligning two convex figures to minimize area or perimeter. Algorithmica 62, 464–479 (2012)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ahn, H.K., Abardia, J., Bae, S.W., Cheong, O., Dann, S., Park, D., Shin, C.S.: The minimum convex container of two convex polytopes under translations, submitted manuscriptGoogle Scholar
  3. 3.
    Ahn, H.K., Bae, S.W., Cheong, O., Park, D., Shin, C.S.: Minimum convex container of two convex polytopes under translations. In: Proceedings of the 26th Canadian Conference on Computational Geometry (CCCG 2014) (2014)Google Scholar
  4. 4.
    Ahn, H.K., Brass, P., Shin, C.S.: Maximum overlap and minimum convex hull of two convex polyhedra under translations. Comput. Geom. 40(2), 171–177 (2008). http://www.sciencedirect.com/science/article/pii/S0925772107000909 MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Alt, H., Hurtado, F.: Packing convex polygons into rectangular boxes. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 2000. LNCS, vol. 2098, pp. 67–80. Springer, Heidelberg (2001). doi: 10.1007/3-540-47738-1_5 CrossRefGoogle Scholar
  6. 6.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geomtry, Algorithms and Applications, 3rd edn. Springer, Berlin (2008)MATHGoogle Scholar
  7. 7.
    Daniels, K., Milenkovic, V.: Multiple translational containment, part I: an approximation algorithm. Algorithmica 19, 148–182 (1997)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Guibas, L., Ramshaw, L., Stolfi, J.: A kinetic framework for computational geometry. In: Proceedings of the 24th Annual Symposium on Foundations of Computer Science (FOCS 1983), pp. 100–111. IEEE (1983)Google Scholar
  9. 9.
    Kaul, A., O’Connor, M.A., Srinivasan, V.: Computing Minkowski sums of regular polygons. In: Proceedings of the 3rd Canadian Conference on Computational Geometry (CCCG 1991), pp. 74–77 (1991)Google Scholar
  10. 10.
    Kepler, J.: Vom sechseckigen Schnee, Ostwalds Klassiker der Exakten Wissenschaften, vol. 273. Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, strena seu de Nive sexangula, Translated from the Latin and with an introduction and notes by Dorothea Goetz (1987)Google Scholar
  11. 11.
    Lee, H.C., Woo, T.C.: Determining in linear time the minimum area convex hull of two polygons. IIE Trans. 20(4), 338–345 (1988)CrossRefGoogle Scholar
  12. 12.
    Milenkovic, V.: Rotational polygon containment and minimum enclosure using robust 2D constructions. Comput. Geom.: Theory Appl. 13, 3–19 (1999)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Ramkumar, G.: An algorithm to compute the Minkowski sum outer-face of two simple polygons. In: Proceedings of the 12th Annual Symposium on Computational Geometry (SoCG 1996), pp. 234–241. ACM (1996)Google Scholar
  14. 14.
    Sugihara, K., Sawai, M., Sano, H., Kim, D.S., Kim, D.: Disk packing for the estimation of the size of a wire bundle. Jpn. J. Ind. Appl. Math. 21, 259–278 (2004)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Tang, K., Wang, C.C.L., Chen, D.Z.: Minimum area convex packing of two convex polygons. Int. J. Comput. Geom. Appl. 16(1), 41–74 (2006)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringPOSTECHPohangSouth Korea

Personalised recommendations