Advertisement

Generating All Patterns of Graph Partitions Within a Disparity Bound

  • Jun KawaharaEmail author
  • Takashi Horiyama
  • Keisuke Hotta
  • Shin-ichi Minato
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10167)

Abstract

A balanced graph partition on a vertex-weighted graph is a partition of the vertex set such that the partition has k parts and the disparity, which is defined as the ratio of the maximum total weight of parts to the minimum one, is at most r. In this paper, a novel algorithm is proposed that enumerates all the graph partitions with small disparity. Experimental results show that five millions of partitions with small disparity for some graph with more than 100 edges can be enumerated within ten minutes.

Notes

Acknowledgment

The authors would like to thank Dr. Toshiki Saitoh, Dr. Norihito Yasuda and Dr. Ryo Yoshinaka for their valuable comments. This work was partly supported by JSPS KAKENHI 15H05711, 24106007 and 15K00008.

References

  1. 1.
    Andreev, K., Räcke, H.: Balanced graph partitioning. Theor. Comput. Syst. 39(6), 929–939 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Flajolet, P., Noy, M.: Analytic combinatorics of non-crossing configurations. Discrete Math. 204(1), 203–229 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Hardy, G., Lucet, C., Limnios, N.: K-terminal network reliability measures with binary decision diagrams. IEEE Trans. Reliab. 56(3), 506–515 (2007)CrossRefGoogle Scholar
  4. 4.
    Imai, H., Sekine, K., Imai, K.: Computational investigations of all-terminal network reliability via BDDs. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E82–A, 714–721 (1999)Google Scholar
  5. 5.
    OEIS Foundation Inc.: The on-line encyclopedia of integer sequences (2011). http://oeis.org/A054726
  6. 6.
    Inoue, T., Takano, K., Watanabe, T., Kawahara, J., Yoshinaka, R., Kishimoto, A., Tsuda, K., Minato, S., Hayashi, Y.: Distribution loss minimization with guaranteed error bound. IEEE Trans. Smart Grid 5(1), 102–111 (2014)CrossRefGoogle Scholar
  7. 7.
    Karpinski, M.: Approximability of the minimum bisection problem: an algorithmic challenge. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 59–67. Springer, Heidelberg (2002). doi: 10.1007/3-540-45687-2_4 CrossRefGoogle Scholar
  8. 8.
    Kawahara, J., Inoue, T., Iwashita, H., Minato, S.: Frontier-based search for enumerating all constrained subgraphs with compressed representation. Hokkaido University, Division of Computer Science, TCS Technical reports TCS-TR-A-13-76 (2014)Google Scholar
  9. 9.
    King, D.M., Jacobson, S.H., Sewell, E.C.: Efficient geo-graph contiguity and hole algorithms for geographic zoning and dynamic plane graph partitioning. Math. Program. 149(1–2), 425–457 (2015). http://dx.doi.org/10.1007/s10107-014-0762-4 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Knuth, D.E.: The Art of Computer Programming, Vol. 4A. Combinatorial Algorithms, Part 1, 1st edn. Addison-Wesley Professional, Boston (2011)zbMATHGoogle Scholar
  11. 11.
    Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems. In: Proceedings of the 30th ACM/IEEE Design Automation Conference, pp. 272–277 (1993)Google Scholar
  12. 12.
    Nemoto, T., Hotta, K.: On the limits of the reduction in population disparity between single-member election districts in Japan. Jpn. J. Electoral Stud. 20, 136–147 (2005). (in Japanese)Google Scholar
  13. 13.
    Sekine, K., Imai, H., Tani, S.: Computing the Tutte polynomial of a graph of moderate size. In: Staples, J., Eades, P., Katoh, N., Moffat, A. (eds.) ISAAC 1995. LNCS, vol. 1004, pp. 224–233. Springer, Heidelberg (1995). doi: 10.1007/BFb0015427 CrossRefGoogle Scholar
  14. 14.
    Takizawa, A., Takechi, Y., Ohta, A., Katoh, N., Inoue, T., Horiyama, T., Kawahara, J., Minato, S.: Enumeration of region partitioning for evacuation planning based on ZDD. In: Proceedings of 11th International Symposium on Operations Research and its Applications in Engineering, Technology and Management (ISORA 2013), pp. 1–8 (2013)Google Scholar
  15. 15.
    Yoshinaka, R., Saitoh, T., Kawahara, J., Tsuruma, K., Iwashita, H., Minato, S.: Finding all solutions and instances of numberlink and slitherlink by ZDDs. Algorithms 5(2), 176–213 (2012). http://www.mdpi.com/1999-4893/5/2/176/ MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jun Kawahara
    • 1
    Email author
  • Takashi Horiyama
    • 2
  • Keisuke Hotta
    • 3
  • Shin-ichi Minato
    • 4
  1. 1.Nara Institute of Science and TechnologyIkomaJapan
  2. 2.Saitama UniversitySaitamaJapan
  3. 3.Bunkyo UniversityChigasakiJapan
  4. 4.Hokkaido UniversitySapporoJapan

Personalised recommendations