Histone Posttranslational Modifications in Schizophrenia

  • Elizabeth A. Thomas
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 978)


Schizophrenia is a complex neuropsychiatric disorder with high heritability; however, family and twin studies have indicated that environmental factors also play important roles in the etiology of disease. Environmental triggers exert their influence on behavior via epigenetic mechanisms. Epigenetic modifications, such as histone acetylation and methylation, as well as DNA methylation, can induce lasting changes in gene expression and have therefore been implicated in promoting the behavioral and neuronal behaviors that characterize this disorder. Importantly, because epigenetic processes are potentially reversible, they might serve as targets in the design of novel therapies in psychiatry. This chapter will review the current information regarding histone modifications in schizophrenia and the potential therapeutic relevance of such marks.


Epigenetic Psychiatric CNS Therapeutic 



histone acetyltransferase


histone deacetylase


lysine demethylases


lysine methyltransferases


polyinosinic-polycytidylic acid


protein arginine methyltransferases


  1. 1.
    Lewis DA, Lieberman JA. Catching up on schizophrenia: natural history and neurobiology. Neuron. 2000;28:325–34.CrossRefPubMedGoogle Scholar
  2. 2.
    Meltzer HY. Suicidality in schizophrenia: a review of the evidence for risk factors and treatment options. Curr Psychiatry Rep. 2002;4:279–83.CrossRefPubMedGoogle Scholar
  3. 3.
    Giegling I, Hartmann AM, Genius J, Benninghoff J, Moller HJ, Rujescu D. Systems biology and complex neurobehavioral traits. Pharmacopsychiatry. 2008;41(Suppl 1):S32–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Riley B, Kendler KS. Molecular genetic studies of schizophrenia. Eur J Hum Genet. 2006;14:669–80.CrossRefPubMedGoogle Scholar
  5. 5.
    Ross CA, Margolis RL, Reading SA, Pletnikov M, Coyle JT. Neurobiology of schizophrenia. Neuron. 2006;52:139–53.CrossRefPubMedGoogle Scholar
  6. 6.
    McDonald C, Murray RM. Early and late environmental risk factors for schizophrenia. Brain Res Brain Res Rev. 2000;31:130–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Mirnics K, Levitt P, Lewis DA. Critical appraisal of DNA microarrays in psychiatric genomics. Biol Psychiatry. 2006;60:163–76.CrossRefPubMedGoogle Scholar
  8. 8.
    Thomas EA. Molecular profiling of antipsychotic drug function: convergent mechanisms in the pathology and treatment of psychiatric disorders. Mol Neurobiol. 2006;34:109–28.CrossRefPubMedGoogle Scholar
  9. 9.
    Deutsch SI, Rosse RB, Mastropaolo J, Long KD, Gaskins BL. Epigenetic therapeutic strategies for the treatment of neuropsychiatric disorders: ready for prime time? Clin Neuropharmacol. 2008;31:104–19.CrossRefPubMedGoogle Scholar
  10. 10.
    Oh G, Petronis A. Environmental studies of schizophrenia through the prism of epigenetics. Schizophr Bull. 2008;34:1122–9.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Roth TL, Lubin FD, Sodhi M, Kleinman JE. Epigenetic mechanisms in schizophrenia. Biochim Biophys Acta. 2009;1790:869–77.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tsankova N, Renthal W, Kumar A, Nestler EJ. Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci. 2007;8:355–67.CrossRefPubMedGoogle Scholar
  13. 13.
    Grayson DR, Guidotti A. The dynamics of DNA methylation in schizophrenia and related psychiatric disorders. Neuropsychopharmacology. 2013;38:138–66.CrossRefPubMedGoogle Scholar
  14. 14.
    Nishioka M, Bundo M, Kasai K, Iwamoto K. DNA methylation in schizophrenia: progress and challenges of epigenetic studies. Genome Med. 2012;4:96.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature. 2007;447:433–40.CrossRefPubMedGoogle Scholar
  16. 16.
    Kornberg RD, Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell. 1999;98:285–94.CrossRefPubMedGoogle Scholar
  17. 17.
    Quina AS, Buschbeck M, Di Croce L. Chromatin structure and epigenetics. Biochem Pharmacol. 2006;72:1563–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403:41–5.CrossRefPubMedGoogle Scholar
  19. 19.
    An W. Histone acetylation and methylation: combinatorial players for transcriptional regulation. Subcell Biochem. 2007;41:351–69.PubMedGoogle Scholar
  20. 20.
    Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol. 2004;338:17–31.CrossRefPubMedGoogle Scholar
  21. 21.
    Xu WS, Parmigiani RB, Marks PA. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene. 2007;26:5541–52.CrossRefPubMedGoogle Scholar
  22. 22.
    Adcock IM, Ford P, Ito K, Barnes PJ. Epigenetics and airways disease. Respir Res. 2006;7:21.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hildmann C, Riester D, Schwienhorst A. Histone deacetylases—an important class of cellular regulators with a variety of functions. Appl Microbiol Biotechnol. 2007;75:487–97.CrossRefPubMedGoogle Scholar
  24. 24.
    Reichert N, Choukrallah MA, Matthias P. Multiple roles of class I HDACs in proliferation, differentiation, and development. Cell Mol Life Sci. 2012;69:2173–87.CrossRefPubMedGoogle Scholar
  25. 25.
    Morales Y, Caceres T, May K, Hevel JM. Biochemistry and regulation of the protein arginine methyltransferases (PRMTs). Arch Biochem Biophys. 2016;590:138–52.CrossRefPubMedGoogle Scholar
  26. 26.
    Morera L, Lubbert M, Jung M. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin Epigenetics. 2016;8:57.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Klose RJ, Yamane K, Bae Y, Zhang D, Erdjument-Bromage H, Tempst P, et al. The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature. 2006;442:312–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Banerjee T, Chakravarti D. A peek into the complex realm of histone phosphorylation. Mol Cell Biol. 2011;31:4858–73.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sawicka A, Seiser C. Sensing core histone phosphorylation—a matter of perfect timing. Biochim Biophys Acta. 2014;1839:711–8.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wu L, Zee BM, Wang Y, Garcia BA, Dou Y. The RING finger protein MSL2 in the MOF complex is an E3 ubiquitin ligase for H2B K34 and is involved in crosstalk with H3 K4 and K79 methylation. Mol Cell. 2011;43:132–44.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Fuchs G, Oren M. Writing and reading H2B monoubiquitylation. Biochim Biophys Acta. 2014;1839:694–701.CrossRefPubMedGoogle Scholar
  32. 32.
    Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature. 2004;431:873–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Mirnics K, Middleton FA, Marquez A, Lewis DA, Levitt P. Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron. 2000;28:53–67.CrossRefPubMedGoogle Scholar
  34. 34.
    Horvath S, Janka Z, Mirnics K. Analyzing schizophrenia by DNA microarrays. Biol Psychiatry. 2010;69:157–62.CrossRefGoogle Scholar
  35. 35.
    Kosower NS, Gerad L, Goldstein M, Parasol N, Zipser Y, Ragolsky M, et al. Constitutive heterochromatin of chromosome 1 and Duffy blood group alleles in schizophrenia. Am J Med Genet. 1995;60:133–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Sharma RP, Rosen C, Kartan S, Guidotti A, Costa E, Grayson DR, et al. Valproic acid and chromatin remodeling in schizophrenia and bipolar disorder: preliminary results from a clinical population. Schizophr Res. 2006;88:227–31.CrossRefPubMedGoogle Scholar
  37. 37.
    Gavin DP, Kartan S, Chase K, Grayson DR, Sharma RP. Reduced baseline acetylated histone 3 levels, and a blunted response to HDAC inhibition in lymphocyte cultures from schizophrenia subjects. Schizophr Res. 2008;103:330–2.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Chase KA, Gavin DP, Guidotti A, Sharma RP. Histone methylation at H3K9: evidence for a restrictive epigenome in schizophrenia. Schizophr Res. 2013;149:15–20.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Gavin DP, Rosen C, Chase K, Grayson DR, Tun N, Sharma RP. Dimethylated lysine 9 of histone 3 is elevated in schizophrenia and exhibits a divergent response to histone deacetylase inhibitors in lymphocyte cultures. J Psychiatry Neurosci. 2009;34:232–7.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Zee BM, Levin RS, Xu B, LeRoy G, Wingreen NS, Garcia BA. In vivo residue-specific histone methylation dynamics. J Biol Chem. 2010;285:3341–50.CrossRefPubMedGoogle Scholar
  41. 41.
    Sharma RP, Feiner B, Chase KA. Histone H3 phosphorylation is upregulated in PBMCs of schizophrenia patients in comparison to healthy controls. Schizophr Res. 2015;169:498–9.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Akbarian S, Ruehl MG, Bliven E, Luiz LA, Peranelli AC, Baker SP, et al. Chromatin alterations associated with down-regulated metabolic gene expression in the prefrontal cortex of subjects with schizophrenia. Arch Gen Psychiatry. 2005;62:829–40.CrossRefPubMedGoogle Scholar
  43. 43.
    Huang HS, Matevossian A, Whittle C, Kim SY, Schumacher A, Baker SP, et al. Prefrontal dysfunction in schizophrenia involves mixed-lineage leukemia 1-regulated histone methylation at GABAergic gene promoters. J Neurosci. 2007;27:11254–62.CrossRefPubMedGoogle Scholar
  44. 44.
    Chase KA, Rosen C, Rubin LH, Feiner B, Bodapati AS, Gin H, et al. Evidence of a sex-dependent restrictive epigenome in schizophrenia. J Psychiatr Res. 2015;65:87–94.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Tang B, Dean B, Thomas EA. Disease- and age-related changes in histone acetylation at gene promoters in psychiatric disorders. Transl Psychiatry. 2012;1:e64.CrossRefGoogle Scholar
  46. 46.
    Sharma RP, Grayson DR, Gavin DP. Histone deactylase 1 expression is increased in the prefrontal cortex of schizophrenia subjects: analysis of the National Brain Databank microarray collection. Schizophr Res. 2008;98:111–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Meyer U, Feldon J. To poly(I:C) or not to poly(I:C): advancing preclinical schizophrenia research through the use of prenatal immune activation models. Neuropharmacology. 2012;62(3):1308–21.CrossRefPubMedGoogle Scholar
  48. 48.
    Tang B, Jia H, Kast RJ, Thomas EA. Epigenetic changes at gene promoters in response to immune activation in utero. Brain Behav Immun. 2013;30:168–75.CrossRefPubMedGoogle Scholar
  49. 49.
    Connor CM, Dincer A, Straubhaar J, Galler JR, Houston IB, Akbarian S. Maternal immune activation alters behavior in adult offspring, with subtle changes in the cortical transcriptome and epigenome. Schizophr Res. 2012;140:175–84.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Mackowiak M, Bator E, Latusz J, Mordalska P, Wedzony K. Prenatal MAM administration affects histone H3 methylation in postnatal life in the rat medial prefrontal cortex. Eur Neuropsychopharmacol. 2014;24:271–89.CrossRefPubMedGoogle Scholar
  51. 51.
    Blaze J, Asok A, Roth TL. Long-term effects of early-life caregiving experiences on brain-derived neurotrophic factor histone acetylation in the adult rat mPFC. Stress. 2015;18:607–15.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    de Moura AC, da Silva IR, Reinaldo G, Dani C, Elsner VR, Giovenardi M. Global histone H4 acetylation in the olfactory bulb of lactating rats with different patterns of maternal behavior. Cell Mol Neurobiol. 2016;36:1209–13.CrossRefPubMedGoogle Scholar
  53. 53.
    Bagot RC, Zhang TY, Wen X, Nguyen TT, Nguyen HB, Diorio J, et al. Variations in postnatal maternal care and the epigenetic regulation of metabotropic glutamate receptor 1 expression and hippocampal function in the rat. Proc Natl Acad Sci U S A. 2012;109(Suppl 2):17200–7.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Bymaster FP, Calligaro DO, Falcone JF, Marsh RD, Moore NA, Tye NC, et al. Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology. 1996;14:87–96.CrossRefPubMedGoogle Scholar
  55. 55.
    Jann MW. Clozapine. Pharmacotherapy. 1991;11:179–95.PubMedGoogle Scholar
  56. 56.
    Kerwin R, Taylor D. Antipsychotics—a review of the current status and clinical potential. CNS Drugs. 1996;6:71–82.CrossRefGoogle Scholar
  57. 57.
    Li J, Guo Y, Schroeder FA, Youngs RM, Schmidt TW, Ferris C, et al. Dopamine D2-like antagonists induce chromatin remodeling in striatal neurons through cyclic AMP-protein kinase A and NMDA receptor signaling. J Neurochem. 2004;90:1117–31.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Bonito-Oliva A, Sodersten E, Spigolon G, Hu X, Hellysaz A, Falconi A, et al. Differential regulation of the phosphorylation of Trimethyl-lysine27 histone H3 at serine 28 in distinct populations of striatal projection neurons. Neuropharmacology. 2016;107:89–99.CrossRefPubMedGoogle Scholar
  59. 59.
    Kurita M, Holloway T, Garcia-Bea A, Kozlenkov A, Friedman AK, Moreno JL, et al. HDAC2 regulates atypical antipsychotic responses through the modulation of mGlu2 promoter activity. Nat Neurosci. 2012;15:1245–54.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Ookubo M, Kanai H, Aoki H, Yamada N. Antidepressants and mood stabilizers effects on histone deacetylase expression in C57BL/6 mice: brain region specific changes. J Psychiatr Res. 2013;47:1204–14.CrossRefPubMedGoogle Scholar
  61. 61.
    Sommer IE, Slotema CW, Daskalakis ZJ, Derks EM, Blom JD, van der Gaag M. The treatment of hallucinations in schizophrenia spectrum disorders. Schizophr Bull. 2012;38:704–14.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Tsankova NM, Kumar A, Nestler EJ. Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. J Neurosci. 2004;24:5603–10.CrossRefPubMedGoogle Scholar
  63. 63.
    Kazantsev AG, Thompson LM. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov. 2008;7:854–68.CrossRefPubMedGoogle Scholar
  64. 64.
    Akbarian S. Epigenetic mechanisms in schizophrenia. Dialogues Clin Neurosci. 2014;16:405–17.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Citrome L. Schizophrenia and valproate. Psychopharmacol Bull. 2003;37(Suppl 2):74–88.PubMedGoogle Scholar
  66. 66.
    Wassef AA, Dott SG, Harris A, Brown A, O'Boyle M, Meyer 3rd WJ, et al. Randomized, placebo-controlled pilot study of divalproex sodium in the treatment of acute exacerbations of chronic schizophrenia. J Clin Psychopharmacol. 2000;20:357–61.CrossRefPubMedGoogle Scholar
  67. 67.
    Wassef AA, Hafiz NG, Hampton D, Molloy M. Divalproex sodium augmentation of haloperidol in hospitalized patients with schizophrenia: clinical and economic implications. J Clin Psychopharmacol. 2001;21:21–6.CrossRefPubMedGoogle Scholar
  68. 68.
    Casey DE, Daniel DG, Tamminga C, Kane JM, Tran-Johnson T, Wozniak P, et al. Divalproex ER combined with olanzapine or risperidone for treatment of acute exacerbations of schizophrenia. Neuropsychopharmacology. 2009;34:1330–8.CrossRefPubMedGoogle Scholar
  69. 69.
    Casey DE, Daniel DG, Wassef AA, Tracy KA, Wozniak P, Sommerville KW. Effect of divalproex combined with olanzapine or risperidone in patients with an acute exacerbation of schizophrenia. Neuropsychopharmacology. 2003;28:182–92.CrossRefPubMedGoogle Scholar
  70. 70.
    Citrome L. Adjunctive lithium and anticonvulsants for the treatment of schizophrenia: what is the evidence? Expert Rev Neurother. 2009;9:55–71.CrossRefPubMedGoogle Scholar
  71. 71.
    Balasubramanian S, Verner E, Buggy JJ. Isoform-specific histone deacetylase inhibitors: the next step? Cancer Lett. 2009;280:211–21.CrossRefPubMedGoogle Scholar
  72. 72.
    Chateauvieux S, Morceau F, Dicato M, Diederich M. Molecular and therapeutic potential and toxicity of valproic acid. J Biomed Biotechnol. 2010;2010:18.CrossRefGoogle Scholar
  73. 73.
    Tang B, Dean B, Thomas EA. Disease- and age-related changes in histone acetylation at gene promoters in psychiatric disorders. Transl Psychiatry. 2011;1:e64.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Chen Y, Dong E, Grayson DR. Analysis of the GAD1 promoter: trans-acting factors and DNA methylation converge on the 5′ untranslated region. Neuropharmacology. 2011;60:1075–87.CrossRefPubMedGoogle Scholar
  75. 75.
    Schroeder FA, Lewis MC, Fass DM, Wagner FF, Zhang YL, Hennig KM, et al. A selective HDAC 1/2 inhibitor modulates chromatin and gene expression in brain and alters mouse behavior in two mood-related tests. PLoS One. 2013;8:e71323.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Kwon B, Houpt TA. Phospho-acetylation of histone H3 in the amygdala after acute lithium chloride. Brain Res. 2010;1333:36–47.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Molecular and Cellular NeuroscienceThe Scripps Research InstituteLa JollaUSA

Personalised recommendations