Advertisement

FEniCS-HPC: Coupled Multiphysics in Computational Fluid Dynamics

  • Johan Hoffman
  • Johan Jansson
  • Niyazi Cem Degirmenci
  • Jeannette Hiromi Spühler
  • Rodrigo Vilela De Abreu
  • Niclas Jansson
  • Aurélien Larcher
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10164)

Abstract

We present a framework for coupled multiphysics in computational fluid dynamics, targeting massively parallel systems. Our strategy is based on general problem formulations in the form of partial differential equations and the finite element method, which open for automation, and optimization of a set of fundamental algorithms. We describe these algorithms, including finite element matrix assembly, adaptive mesh refinement and mesh smoothing; and multiphysics coupling methodologies such as unified continuum fluid-structure interaction (FSI), and aeroacoustics by coupled acoustic analogies. The framework is implemented as FEniCS open source software components, optimized for massively parallel computing. Examples of applications are presented, including simulation of aeroacoustic noise generated by an airplane landing gear, simulation of the blood flow in the human heart, and simulation of the human voice organ.

Keywords

FEniCS Unicorn Eunison High-performance computing Multiphysics Computational fluid dynamics Adaptive finite element method 

Notes

Acknowledgments

This research has been supported by the European Research Council, the EU-FET grant EUNISON 308874, the Swedish Research Council, the Swedish Foundation for Strategic Research, the Swedish Energy Agency, the Basque Excellence Research Center (BERC 2014-2017) program by the Basque Government, the Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa accreditation SEV-2013-0323 and the Project of the Spanish Ministry of Economy and Competitiveness with reference MTM2013-40824. We acknowledge the Swedish National Infrastructure for Computing (SNIC) at PDC – Center for High-Performance Computing for awarding us access to the supercomputer resources Beskow. Initial volume meshes have been generated with ANSA from Beta-CAE Systems S. A., who generously provided an academic license for this project.

References

  1. 1.
    Deliverable d2.4 incompressible flow model for fluid-structure-acoustic coupling. EUNISON FP7 FET project documentationGoogle Scholar
  2. 2.
    Eunison - extensive unified-domain simulation of the human voice, eu-fet project. http://eunison.eu
  3. 3.
    Bazilevs, Y., Calo, V., Cottrell, J., Hughes, T., Reali, A., Scovazzi, G.: Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput. Meth. Appl. Mech. Eng. 197(1), 173–201 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Escobar, M.: Finite element simulation of flow-induced noise using lighthills acoustic analogy. Ph.D. thesis, Universität Erlangen-Nürnberg (2007)Google Scholar
  5. 5.
    Williams, J.E.F., Hawkings, D.: Sound generation by turbulence and surfaces in arbitrary motions. Phil. Trans. Roy. Soc. A264, 321–342 (1969)CrossRefzbMATHGoogle Scholar
  6. 6.
    Hansbo, P.: A crank-nicolson type space-time finite element method for computing on moving meshes. J. Comput. Phys. 159, 274–289 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hoffman, J., Jansson, J., de Abreu, R.V.: Adaptive modeling of turbulent flow with residual based turbulent kinetic energy dissipation. Comput. Meth. Appl. Mech. Eng. 200(37–40), 2758–2767 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hoffman, J., Jansson, J., Jansson, N., De Abreu, R.V.: Towards a parameter-free method for high reynolds number turbulent flow simulation based on adaptive finite element approximation. Comput. Meth. Appl. Mech. Eng. 288, 60–74 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hoffman, J., Jansson, J., Stöckli, M.: Unified continuum modeling of fluid-structure interaction. Math. Mod. Meth. Appl. S. 21(3), 491–513 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hoffman, J., Johnson, C.: A new approach to computational turbulence modeling. Comput. Meth. Appl. Mech. Eng. 195(23), 2865–2880 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hoffman, J., Johnson, C.: Computational Turbulent Incompressible Flow. Applied Mathematics: Body and Soul, vol. 4. Springer, Heidelberg (2007)CrossRefzbMATHGoogle Scholar
  12. 12.
    Jansson, N.: High performance adaptive finite element methods: with applications in aerodynamics. Ph.D. thesis, KTH Royal Institute of Technology (2013)Google Scholar
  13. 13.
    Jansson, N.: Optimizing sparse matrix assembly in finite element solvers with one-sided communication. In: Daydé, M., Marques, O., Nakajima, K. (eds.) VECPAR 2012. LNCS, vol. 7851, pp. 128–139. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38718-0_15 CrossRefGoogle Scholar
  14. 14.
    Jansson, N., Hoffman, J., Jansson, J.: Framework for massively parallel adaptive finite element computational fluid dynamics on tetrahedral meshes. SIAM J. Sci. Comput. 34(1), C24–C41 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Labrosse, M.R., Lobo, K., Beller, C.J.: Structural analysis of the natural aortic valve in dynamics: from unpressurized to physiologically loaded. J. Biomech. 43(10), 1916–1922 (2010)CrossRefGoogle Scholar
  16. 16.
    Larsson, D., Spuhler, J.H., Nordenfur, T., Hoffman, J., Colarieti-Tosti, M. Gao, H., Larsson, M.: Patient-specific flow simulation of the left ventricle from 4d echocardiography - feasibility and robustness evaluation. In: 2015 IEEE International Ultrasonics Symposium (2015)Google Scholar
  17. 17.
    Logg, A., Wells, G.N.: DOLFIN: automated finite element computing. ACM Trans. Math. Softw. 37(2), 1–28 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Spühler, J.H., Jansson, J., Jansson, N., Hoffman, J.: A finite element framework for high performance computer simulation of blood flow in the left ventricle of the human heart. Technical report 34, KTH, Computational Science and Technology (CST) (2015)Google Scholar
  19. 19.
    Thubrikar, M.: The Aortic Valve. CRC Press, Boca Raton (1990)Google Scholar
  20. 20.
    Zawodny, N., Liu, F., Yardibi, T., Cattafesta, L., Khorrami, M., Neuhart, D., Van de Ven, T.: A comparative study of a 1/4-scale gulfstream g550 aircraft nose gear model. In: Proceedings of 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference) (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Johan Hoffman
    • 1
    • 2
  • Johan Jansson
    • 1
    • 2
  • Niyazi Cem Degirmenci
    • 1
  • Jeannette Hiromi Spühler
    • 1
  • Rodrigo Vilela De Abreu
    • 1
  • Niclas Jansson
    • 1
  • Aurélien Larcher
    • 3
  1. 1.Department of Computational Science and TechnologyKTH Royal Institute of TechnologyStockholmSweden
  2. 2.Basque Center for Applied Mathematics (BCAM)BilbaoSpain
  3. 3.Norwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations