Advertisement

On the Significance of Exposure Time in Computational Blood Damage Estimation

  • Lutz Pauli
  • Marek Behr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10164)

Abstract

The reliability of common stress-based power law models for hemolysis estimations in blood pumps is still not satisfying. Stress-based models are based on an instantaneous shear stress measure. Therefore, such models implicitly assume that red blood cells deform immediately due to the action of forces. In contrast, a strain-based model considers the entire deformation history of the cells. By applying a viscoelastic tensor equation for the stress computation, the effect of exposure time is represented as a biophysical phenomenon. Comparisons of stress-based and strain-based hemolysis models in a centrifugal blood pump show very significant differences. Stress peaks with short exposure time contribute to the overall hemolysis in the stress-based model, whereas regions with increased shear and long exposure time are responsible for damage in the strain-based model.

Keywords

Computational hemodynamics Hemolysis modeling Ventricular assist device Finite element method Blood damage 

Notes

Acknowledgments

We like to thank Jaewook Nam and Matteo Pasquali for their contributions to previous implementations of the hemolysis models. In addition, we gratefully acknowledge the support by the DFG program GSC 111 (AICES Graduate School). Computing resources were provided by the RWTH Aachen University IT Center and by the Forschungszentrum Jülich John von Neumann Institute for Computing under the Jülich Aachen Research Alliance (JARA).

References

  1. 1.
    Arora, D., Behr, M., Coronado-Matutti, O., Pasquali, M.: Estimation of hemolysis in centrifugal blood pumps using morphology tensor approach. In: Bathe, K. (ed.) Proceedings of 3rd MIT Conference on Computational Fluid and Solid Dynamics, pp. 578–582. Elsevier Ltd. (2005)Google Scholar
  2. 2.
    Arora, D., Behr, M., Pasquali, M.: A tensor-based measure for estimating blood damage. Artif. Organs 28, 1002–1015 (2004). errata in Artificial Organs 36(5), 500 (2012)CrossRefGoogle Scholar
  3. 3.
    Arora, D., Behr, M., Pasquali, M.: Hemolysis estimation in a centrifugal blood pump using a tensor-based measure. Artif. Organs 30(7), 539–547 (2006)CrossRefGoogle Scholar
  4. 4.
    Blackshear, P., Blackshear, G.: Mechanical hemolysis. In: Skalak, R., Chien, S. (eds.) Handbook of Bioengineering, p. 15.1–15.19. McGraw-Hill, New York (1987)Google Scholar
  5. 5.
    Blackshear, P., Dorman, F., Steinbach, J.: Some mechanical effects that influence hemolysis. ASAIO J. 11(1), 112–117 (1965)CrossRefGoogle Scholar
  6. 6.
    Bludszuweit, C.: Three-dimensional numerical prediction of stress loading of blood particles in a centrifugal pump. Artif. Organs 19(7), 590–596 (1995)CrossRefGoogle Scholar
  7. 7.
    Bronkhorst, P., Streekstra, G., Grimbergen, J., Nijhof, E., Sixma, J., Brakenhoff, G.: A new method to study shape recovery of red blood cells using multiple optical trapping. Biophys. J. 69(5), 1666–1673 (1995)CrossRefGoogle Scholar
  8. 8.
    Chien, S.: Shear dependence of effective cell volume as a determinant of blood viscosity. Science 168(3934), 977–979 (1970)CrossRefGoogle Scholar
  9. 9.
    Chien, S.: Red cell deformability and its relevance to blood flow. Annu. Rev. Physiol. 49, 177–192 (1987)CrossRefGoogle Scholar
  10. 10.
    Evans, E., LaCelle, P.: Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation. Blood 45, 29–43 (1975)Google Scholar
  11. 11.
    Farinas, M., Garon, A.: Fast three-dimensional numerical hemolysis approximation. Artif. Organs 28(11), 1016–1025 (2004)CrossRefGoogle Scholar
  12. 12.
    Farinas, M., Garon, A., Lacasse, D., N’dri, D.: Asymptotically consistent numerical approximation of hemolysis. J. Biomed. Eng. 128, 688–696 (2006)Google Scholar
  13. 13.
    Fischer, T.M.: Shape memory of human red blood cells. Biophys. J. 86, 3304–3313 (2004)CrossRefGoogle Scholar
  14. 14.
    Fischer, T., Stohr-Lissen, M., Schmid-Schönbein, H.: The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow. Science 202(4370), 894–896 (1978)CrossRefGoogle Scholar
  15. 15.
    Gesenhues, L., Pauli, L., Behr, M.: Strain-based blood damage estimation for computational design of ventricular assist devices. Int. J. Artif. Organs 39(4), 166–170 (2016)CrossRefGoogle Scholar
  16. 16.
    Giersiepen, M., Wurzinger, L., Opitz, R., Reul, H.: Estimation of shear stress-related blood damage in heart valve prostheses - in vitro comparison of 25 aortic valves. Int. J. Artif. Organs 13(5), 300–306 (1990)Google Scholar
  17. 17.
    Hénon, S., Lenormand, G., Richert, A., Gallet, F.: A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys. J. 76(2), 1145–1151 (1999)CrossRefGoogle Scholar
  18. 18.
    Keller, S., Skalak, R.: Motion of a tank-treading ellipsoidal particle in a shear flow. J. Fluid Mech. 120, 27–47 (1982)CrossRefMATHGoogle Scholar
  19. 19.
    Leverett, L., Hellums, J., Alfrey, C., Lynch, E.: Red blood cell damage by shear stress. Biophys. J. 12, 257–273 (1972)CrossRefGoogle Scholar
  20. 20.
    Maffettone, P., Minale, M.: Equation of change for ellipsoidal drops in viscous flow. J. Non-Newton. Fluid Mech. 78, 227–241 (1998)CrossRefMATHGoogle Scholar
  21. 21.
    Nicoud, F., Toda, H., Cabrit, O., Bose, S., Lee, J.: Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids (1994-present) 23(085106), 1–12 (2011)Google Scholar
  22. 22.
    Pauli, L., Both, J., Behr, M.: Stabilized finite element method for flows with multiple reference frames. Int. J. Numer. Meth. Fluids 78, 657–669 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Pauli, L., Nam, J., Pasquali, M., Behr, M.: Transient stress-based and strain-based hemolysis estimation in a simplified blood pump. Int. J. Numer. Meth. Biomed. Eng. 29(10), 1148–1160 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Probst, M.: Robust Shape Optimization for Incompressible Flow of Shear-Thinning Fluids. Ph.D. thesis, RWTH Aachen University, Aachen, Germany (2013)Google Scholar
  25. 25.
    Rand, R.: Mechanical properties of the red cell membrane: II. viscoelastic breakdown of the membrane. Biophys. J. 4(4), 303–316 (1964)CrossRefGoogle Scholar
  26. 26.
    Riveros-Moreno, V., Wittenberg, J.: The self-diffusion coefficients of myoglobin and hemoglobin in concentrated solutions. J. Biol. Chem. 247(3), 895–901 (1972)Google Scholar
  27. 27.
    Schmid-Schönbein, H., Wells, R.: Fluid drop-like transition of erythrocytes under shear. Science 165(3890), 288–291 (1969)CrossRefGoogle Scholar
  28. 28.
    Stewart, S., Hariharan, P.: Computational round robin #2 (model blood pump), October 2013. https://fdacfd.nci.nih.gov/interlab_study_2_blood_pump
  29. 29.
    Wurzinger, L., Opitz, R., Eckstein, H.: Mechanical blood trauma: an overview. Angeiologie 38, 81–97 (1986)Google Scholar
  30. 30.
    Zhang, T., Taskin, M., Fang, H., Pampori, A., Jarvik, R., Griffith, B., Wu, Z.: Study of flow-induced hemolysis using novel couette-type blood-shearing devices. Artif. Organs 35(12), 1180–1186 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Chair for Computational Analysis of Technical Systems (CATS)RWTH Aachen UniversityAachenGermany

Personalised recommendations