A Collaborative Simulation-Analysis Workflow for Computational Neuroscience Using HPC

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10164)


Workflows for the acquisition and analysis of data in the natural sciences exhibit a growing degree of complexity and heterogeneity, are increasingly performed in large collaborative efforts, and often require the use of high-performance computing (HPC). Here, we explore the reasons for these new challenges and demands and discuss their impact with a focus on the scientific domain of computational neuroscience. We argue for the need of software platforms integrating HPC systems that allow scientists to construct, comprehend and execute workflows composed of diverse data generation and processing steps using different tools. As a use case we present a concrete implementation of such a complex workflow, covering diverse topics such as HPC-based simulation using the NEST software, access to the SpiNNaker neuromorphic hardware platform, complex data analysis using the Elephant library, and interactive visualization methods for facilitating further analysis. Tools are embedded into a web-based software platform under development by the Human Brain Project, called the Collaboratory. On the basis of this implementation, we discuss the state of the art and future challenges in constructing large, collaborative workflows with access to HPC resources.


High-performance computing Workflows Collaboration Reproducibility Provenance tracking Simulation Neuromorphic hardware Comparative data analysis Visualization 



This project has received funding from the Helmholtz Portfolio Supercomputing and Modeling for the Human Brain (SMHB), the European Union’s Horizon 2020 research and innovation programme under grant agreement No 720270 (HBP SGA1), and the DFG SPP Priority Program 1665 (GR 1753/4-1 and DE 2175/1-1).


  1. 1.
    van Albada, S.J., Rowley, A.G., Hopkins, M., Schmidt, M., Senk, J., Stokes, A.B., Galluppi, F., Lester, D.R., Diesmann, M., Furber, S.B.: Full-scale simulation of a cortical microcircuit on SpiNNaker. In: Frontiers in Neuroinformatics Conference Abstract: Neuroinformatics 2016 (2016).
  2. 2.
    van Albada, S.J., Helias, M., Diesmann, M.: Scalability of asynchronous networks is limited by one-to-one mapping between effective connectivity and correlations. PLoS Comput. Biol. 11(9), e1004490 (2015). CrossRefGoogle Scholar
  3. 3.
    Appelt, W.: WWW based collaboration with the BSCW system. In: Pavelka, J., Tel, G., Bartošek, M. (eds.) SOFSEM 1999. LNCS, vol. 1725, pp. 66–78. Springer, Heidelberg (1999). doi: 10.1007/3-540-47849-3_4 CrossRefGoogle Scholar
  4. 4.
    Brüderle, D., Petrovici, M.A., Vogginger, B., Ehrlich, M., Pfeil, T., Millner, S., Grübl, A., Wendt, K., Müller, E., Schwartz, M.O., de Oliveira, D.H., Jeltsch, S., Fieres, J., Schilling, M., Müller, P., Breitwieser, O., Petkov, V., Muller, L., Davison, A.P., Krishnamurthy, P., Kremkow, J., Lundqvist, M., Muller, E., Partzsch, J., Scholze, S., Zühl, L., Mayr, C., Destexhe, A., Diesmann, M., Potjans, T.C., Lansner, A., Schüffny, R., Schemmel, J., Meier, K.: A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systems. Biol. Cybern. 104(4–5), 263–296 (2011). CrossRefGoogle Scholar
  5. 5.
    Davison, A.P., Brüderle, D., Kremkow, J., Muller, E., Pecevski, D., Perrinet, L., Yger, P.: PyNN: a common interface for neuronal network simulators. Front. Neuroinformatics 2(11), 204 (2009). Google Scholar
  6. 6.
    Davison, A.P., Hines, M.L., Muller, E.: Trends in programming languages for neuroscience simulations. Front. Neurosci. 3(3), 374–380 (2009). CrossRefGoogle Scholar
  7. 7.
    Davison, A.P., Yger, P., Muller, E., Kremkow, J., Brüderle, D., Perrinet, L., Eppler, J., Pecevski, D., Debeissat, N., Djurfeldt, M., Schmuker, M., Kaplan, B., Natschlaeger, T., Ray, S., Zaytsev, Y., Gravier, A.: PyNN 0.7.5.
  8. 8.
    Davison, A.P., Yger, P., Muller, E., Kremkow, J., Brüderle, D., Perrinet, L., Eppler, J., Pecevski, D., Debeissat, N., Djurfeldt, M., Schmuker, M., Kaplan, B., Natschlaeger, T., Ray, S., Zaytsev, Y., Antolik, J., Gravier, A., Close, T., Breitwieser, O., Schücker, J., Schmidt, M.: PyNN 0.8.0 (2015).
  9. 9.
    Denker, M., Grün, S.: Designing workflows for the reproducible analysis of electrophysiological data. In: Amunts, K., Grandinetti, L., Lippert, T., Petkov, N. (eds.) BrainComp 2015. LNCS, vol. 10087, pp. 58–72. Springer, Cham (2016). doi: 10.1007/978-3-319-50862-7_5 CrossRefGoogle Scholar
  10. 10.
    Dougiamas, M., Taylor, P.: Moodle: Using learning communities to create an open source course management system. In: World Conference on Educational Multimedia, Hypermedia and Telecommunications (EDMEDIA) (2003).
  11. 11.
    Eppler, J.M., Pauli, R., Peyser, A., Ippen, T., Morrison, A., Senk, J., Schenck, W., Bos, H., Helias, M., Schmidt, M., Kunkel, S., Jordan, J., Gewaltig, M.O., Bachmann, C., Schuecker, J., Albada, S., Zito, T., Deger, M., Michler, F., Hagen, E., Setareh, H., Riquelme, L., Shirvani, A., Duarte, R., Deepu, R., Plesser, H.E.: Nest 2.8.0 (2015).
  12. 12.
    Furber, S.B., Lester, D.R., Plana, L.A., Garside, J.D., Painkras, E., Temple, S., Brown, A.D.: Overview of the SpiNNaker system architecture. IEEE Trans. Comput. 62(12), 2454–2467 (2013). MathSciNetCrossRefGoogle Scholar
  13. 13.
    Garcia, S., Davison, A.P., Rodgers, C., Yger, P., Mahnoun, Y., Estabanez, L., Sobolev, A., Brizzi, T., Jaillet, F., Rautenberg, P., Wachtler, T., Dejean, C., Pröpper, R., Guarino, D.: Neo 0.4.1.
  14. 14.
    Garcia, S., Guarino, D., Jaillet, F., Jennings, T., Pröpper, R., Rautenberg, P.L., Rodgers, C.C., Sobolev, A., Wachtler, T., Yger, P., Davison, A.P.: Neo: an object model for handling electrophysiology data in multiple formats. Front. Neuroinformatics 8, 10 (2014).
  15. 15.
    Gewaltig, M.O., Diesmann, M.: NEST (NEural Simulation Tool). Scholarpedia 2(4) (2007).
  16. 16.
    Grewe, J., Wachtler, T., Benda, J.: A bottom-up approach to data annotation in neurophysiology. Front. Neuroinformatics 5 (2011).
  17. 17.
    Kunkel, S., Schmidt, M., Eppler, J.M., Plesser, H.E., Masumoto, G., Igarashi, J., Ishii, S., Fukai, T., Morrison, A., Diesmann, M., Helias, M.: Spiking network simulation code for petascale computers. Front. Neuroinformatics 8(78), 1 (2014). Google Scholar
  18. 18.
    Potjans, T.C., Diesmann, M.: The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model. Cereb. Cortex 24(3), 785–806 (2014). CrossRefGoogle Scholar
  19. 19.
    Schmidt, M., Bakker, R., Shen, K., Bezgin, G., Hilgetag, C.C., Diesmann, M., van Albada, S.J.: Full-density multi-scale account of structure and dynamics of macaque visual cortex (2015). arXiv preprint
  20. 20.
    Stokes, A.B., Rowley, A.G.D., Knight, J., Lester, D.R., Rast, A., Hopkins, M.W., Davidson, S., Temple, S., Plana, L., Davies, S., Sharpe, T., Patterson, C., Furber, S.B.: sPyNNaker 3.0.0 (2016).
  21. 21.
    Yegenoglu, A., Denker, M., Phan, L., Holstein, D., Chorley, P., Ito, J., Jennings, T., Meyes, R., Quaglio, P., Rostami, V., Sprenger, J., Torre, E., Davison, A., Grün, S.: Elephant - open-source tool for the analysis of electrophysiological data sets. In: Bernstein Conference 2015: Abstract Book, p. W-05 (2015).
  22. 22.
    Yegenoglu, A., Davison, A.P., Holstein, D., Muller, E., Torre, E., Hagen, E., Gosmann, J., Sprenger, J., Ito, J., Denker, M., Chorley, P., Yger, P., Quaglio, P., Meyes, R., Rostami, V., Ray, S., Pröpper, R., Gerkin, R.C., Telenczuk, B.: Elephant 0.3.0.
  23. 23.
    Zehl, L., Jaillet, F., Stoewer, A., Grewe, J., Sobolev, A., Wachtler, T., Brochier, T.G., Riehle, A., Denker, M., Grün, S.: Handling metadata in a neurophysiology laboratory. Front. Neuroinformatics 10 (2016).

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-BRAIN Institute I, Forschungszentrum JülichJülichGermany
  2. 2.Human Brain ProjectÉcole Polytechnique Fédérale de LausanneGenevaSwitzerland
  3. 3.Unité de Neurosciences, Information et Complexité (UNIC)Centre National de la Recherche ScientifiqueGif-sur-YvetteFrance
  4. 4.Department of Computer ScienceUniversity of ManchesterManchesterUK
  5. 5.Jülich Supercomputing Centre (JSC), Forschungszentrum JülichJülichGermany
  6. 6.Visual Computing InstituteRWTH Aachen UniversityAachenGermany
  7. 7.JARA-HPCAachenGermany
  8. 8.Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
  9. 9.Department of Physics, Faculty 1RWTH Aachen UniversityAachenGermany
  10. 10.Theoretical Systems NeurobiologyRWTH Aachen UniversityAachenGermany

Personalised recommendations