Advertisement

UniProv: A Flexible Provenance Tracking System for UNICORE

  • André Giesler
  • Myriam Czekala
  • Björn Hagemeier
  • Richard Grunzke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10164)

Abstract

In this paper we present a flexible provenance management system called UniProv. UniProv is an ongoing development project providing provenance tracking in scientific workflows and data management particularly in the field of neuroscience, thus allowing users to validate and reproduce tasks and results of their experiments.

The primary goal is to equip the commonly used Grid middleware UNICORE [1] and its incorporated workflow engine with the provenance capturing mechanism of UniProv. We also explain an approach for using predefined patterns to ensure compatibility with the W3C PROV [2] Data Model and to map the provenance information properly to a neo4j graph database.

Keywords

Scientific workflows Reproducibility Interoperability Provenance 

Notes

Acknowledgments

The authors thank the German Helmholtz Association’s LSDMA [26] project for supporting the specification of UniProv. Furthermore, we would like to thank the DFG for funding the MASi (NA711/9-1) project.

References

  1. 1.
    Streit, A., Bala, P., Beck-Ratzka, A., Benedyczak, K., et al.: UNICORE 6 - recent and future advancements. Ann. Telecommun. - annales des Télécommunications 65, 757–762 (2010). SpringerCrossRefGoogle Scholar
  2. 2.
    Moreau, L., Missier, P. (eds.): PROV-DM: The PROV Data Model, 30 April 2013. W3C Recommendation. http://www.w3.org/TR/2013/REC-prov-dm-20130430/
  3. 3.
    Neo4j graph database. http://neo4j.com
  4. 4.
    Deelman, E., Gil, Y.: NSF Workshop on Challenges of Scientific Workflows. Technical report, NSF (2006)Google Scholar
  5. 5.
    Wolstencroft, K., Haines, R., Fellows, D., Sufi, S., Goble, C., et al.: The Taverna workflow suite: designing and executing workflows of web services on the desktop, web or in the cloud. Nucleic Acids Res. 41(W1), W557–W561 (2013). doi: 10.1093/nar/gkt328 CrossRefGoogle Scholar
  6. 6.
    Soiland-Reyes, S., Gamble, M., Haines, R.: Research Object Bundle 1.0. researchobject.org Specification (2014). https://w3id.org/bundle/2014-11-05. doi: 10.5281/zenodo.12586
  7. 7.
    The Kepler Project. http://kepler-project.org
  8. 8.
    The VisTrails Project. http://www.vistrails.org
  9. 9.
    Benabdelkader, A., van Kampen, A.H.C., Olabarriaga, S.D.: PROV-man: a PROV-compliant toolkit for provenance management. PeerJ PrePr. 3, e1102 (2015)CrossRefGoogle Scholar
  10. 10.
    Demuth, B., Schuller, B., Holl, S., Daivandy, J., Giesler, A., Huber, V., Sild, S.: The UNICORE Rich Client: facilitating the automated execution of scientific workflows. In: 2010 IEEE Sixth International Conference on e-Science (e-Science), pp. 238–245 (2010)Google Scholar
  11. 11.
    Amunts, K., Bücker, O., Axer, M.: Towards a multiscale, high-resolution model of the human brain. In: Grandinetti, L., Lippert, T., Petkov, N. (eds.) BrainComp 2013. LNCS, vol. 8603, pp. 3–14. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-12084-3_1 Google Scholar
  12. 12.
    Hagemeier, B., Giesler, A., Saini, R., Schuller, B., Buecker, O.: A workflow for polarized light imaging using UNICORE workflow services. In: UNICORE Summit, Poznan, Poland (2014)Google Scholar
  13. 13.
    The Human Brain Project. http://www.humanbrainproject.eu
  14. 14.
    BerndSchuller: UNICORE in the Human Brain Project (2016). http://neuralensemble.org/media/slides/UNICORE_HBP.pdf
  15. 15.
    Miles, S., Groth, P., Deelman, E., Vahi, K., Mehta, G., Moreau, L.: Provenance: the bridge between experiments and data. Comput. Sci. Eng. 10, 38–46 (2008). AIP PublishingCrossRefGoogle Scholar
  16. 16.
    Zhao, Y., Wilde, M., Foster, I.: Applying the virtual data provenance model. In: Moreau, L., Foster, I. (eds.) IPAW 2006. LNCS, vol. 4145, pp. 148–161. Springer, Heidelberg (2006). doi: 10.1007/11890850_16 CrossRefGoogle Scholar
  17. 17.
    McPhillips, T., Bowers, S., Belhajjame, K., Ludäscher, B.: Retrospective provenance without a runtime provenance recorder. In: Proceedings of TAPP 2014 (2015)Google Scholar
  18. 18.
    OWL 2 Web Ontology Language. https://www.w3.org/TR/owl2-overview/
  19. 19.
    The Apache Jena Project. http://jena.apache.org/
  20. 20.
    Wf4Ever Research Object Model (2013). http://wf4ever.github.io/ro/
  21. 21.
    ProvONE: A PROV Extension Data Model for Scientific Workflow Provenance (2014). http://purl.org/provone
  22. 22.
    PROV-TEMPLATE: A Template System for PROV Documents. https://provenance.ecs.soton.ac.uk/prov-template/
  23. 23.
    Korolev, V., Joshi, A., Korolev, V., Grasso, M.A., Joshi, A., et al.: PROB: a tool for tracking provenance and reproducibility of big data experiments. In: Reproduce 2014, HPCA 2014, vol. 11, pp. 264–286 (2014)Google Scholar
  24. 24.
    De Nies, T., Magliacane, S., Verborgh, R., Coppens, S., Groth, P., Mannens, E., Van de Walle, R.: Git2PROV: exposing version control system content as W3C PROV. In: Proceedings of the 2013th International Conference on Posters & Demonstrations Track, vol. 1035, pp. 125–128 (2013)Google Scholar
  25. 25.
    Project: MASI - Metadata Management for Applied Sciences. https://tu-dresden.de/zih/forschung/projekte/masi
  26. 26.
    LSDMA Project: Large-Scale Data Management and Analysis. https://www.helmholtz-lsdma.de/

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • André Giesler
    • 1
  • Myriam Czekala
    • 1
  • Björn Hagemeier
    • 1
  • Richard Grunzke
    • 2
  1. 1.Forschungszentrum Jülich GmbHJülichGermany
  2. 2.Technische Universität DresdenDresdenGermany

Personalised recommendations