Scale Bridging Simulations of Large Elastic Deformations and Bainitic Transformations

  • Marc Weikamp
  • Claas Hüter
  • Mingxuan Lin
  • Ulrich Prahl
  • Diego Schicchi
  • Martin Hunkel
  • Robert Spatschek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10164)

Abstract

The multiscale process of bainitic microstructure formation is still insufficiently understood from a theoretical and simulation perspective. Production processes of press hardened bainitic steels lead to large deformations, and as a particular aspect we investigate the role of large elastic strains, starting from ab initio methods, bridging them to phase field crystal continuum approaches and connecting the results to macroscopic deformation laws. Our investigations show that the phase field crystal model covers large deformations in the nonlinear elastic regime very well. Concerning the microstructure evolution we use a multi phase field model including carbon diffusion, carbide formation and elastic effects. For all the covered aspects we use efficient numerical schemes, which are implemented on GPUs using CUDA.

Keywords

Multi phase field Bainite transformation Phase field crystal ab initio Calculations Nonlinear elasticity GPU implementation 

References

  1. 1.
    Karbasian, H., Tekkaya, A.E.: A review on hot stamping. J. Mater. Proc. Technol. 210(15), 2103–2118 (2010)CrossRefGoogle Scholar
  2. 2.
    Bhadeshia, H.K.D.H.: Bainite in Steels, 2nd edn. Institute of Materials, London (2001)Google Scholar
  3. 3.
    Naderi, M.: Hot stamping of ultra-high strength steels. Ph.D. thesis, RWTH Aachen (2007)Google Scholar
  4. 4.
    Fielding, L.: The bainite controversy. Mater. Sci. Technol. 29(4), 383–399 (2013)CrossRefGoogle Scholar
  5. 5.
    Hüter, C., Friák, M., Weikamp, M., Neugebauer, J., Goldenfeld, N., Svendsen, B., Spatschek, R.: Nonlinear elastic effects in phase field crystal and amplitude equations: comparison to ab initio simulations of bcc metals and graphene. Phys. Rev. B 93(21), 214105 (2016)CrossRefGoogle Scholar
  6. 6.
    Kresse, G., Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47(1), 558–561 (1993)CrossRefGoogle Scholar
  7. 7.
    Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996)CrossRefGoogle Scholar
  8. 8.
    Birch, F.: Finite elastic strain of cubic crystals. Phys. Rev. 71(11), 809–824 (1947)CrossRefMATHGoogle Scholar
  9. 9.
    Düsing, M., Mahnken, R.: Simulation of lower bainitic transformation with the phase-field method considering carbide formation. Comput. Mater. Sci. 111, 91–100 (2016)CrossRefGoogle Scholar
  10. 10.
    Steinbach, I.: Phase-field models in materials science. Model. Simul. Mater. Sci. Eng. 17(7), 073001 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Nvidia CUDA Programming Guide Ver. 7.0, 21 June 2016. http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
  12. 12.
    Monas, A.: Modeling of phase change materials for nonvolatile data storage using GPU simulations. Master’s thesis, Ruhr-Universität (2012)Google Scholar
  13. 13.
    Hüter, C., Nguyen, C.-D., Spatschek, R., Neugebauer, J.: Scale bridging between atomistic and mesoscale modelling: applications of amplitude equation descriptions. Model. Simul. Mater. Sci. Eng. 22, 034001 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marc Weikamp
    • 1
  • Claas Hüter
    • 1
  • Mingxuan Lin
    • 2
  • Ulrich Prahl
    • 2
  • Diego Schicchi
    • 3
  • Martin Hunkel
    • 3
  • Robert Spatschek
    • 1
    • 4
  1. 1.Institute for Energy and Climate ResearchForschungszentrum Jülich GmbHJülichGermany
  2. 2.Department of Ferrous MetallurgyRWTH Aachen UniversityAachenGermany
  3. 3.IWT Stiftung Institut für WerkstofftechnikBremenGermany
  4. 4.JARA-ENERGYAachenGermany

Personalised recommendations