Ab Initio Description of Optoelectronic Properties at Defective Interfaces in Solar Cells

  • Philippe CzajaEmail author
  • Massimo Celino
  • Simone Giusepponi
  • Michele Gusso
  • Urs Aeberhard
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10164)


In order to optimize the optoelectronic properties of novel solar cell architectures, such as the amorphous-crystalline interface in silicon heterojunction devices, we calculate and analyze the local microscopic structure at this interface and in bulk a-Si:H, in particular with respect to the impact of material inhomogeneities. The microscopic information is used to extract macroscopic material properties, and to identify localized defect states, which govern the recombination properties encoded in quantities such as capture cross sections used in the Shockley-Read-Hall theory. To this end, atomic configurations for a-Si:H and a-Si:H/c-Si interfaces are generated using molecular dynamics. Density functional theory calculations are then applied to these configurations in order to obtain the electronic wave functions. These are analyzed and characterized with respect to their localization and their contribution to the (local) density of states. GW calculations are performed for the a-Si:H configuration in order to obtain a quasi-particle corrected absorption spectrum. The results suggest that the quasi-particle corrections can be approximated through a scissors shift of the Kohn-Sham energies.


Amorphous silicon Molecular dynamics Electronic structure Optical properties 



This project has received funding from the European Commission Horizon 2020 research and innovation program under grant agreement No. 676629. The authors gratefully acknowledge the computing time granted on the supercomputer JURECA [19] at Jülich Supercomputing Centre (JSC) and on the supercomputer CRESCO [30] on the ENEA-GRID infrastructure.


  1. 1.
    Aeberhard, U., Czaja, P., Ermes, M., Pieters, B., Chistiakova, G., Bittkau, K., Richter, A., Ding, K., Giusepponi, S., Celino, M.: Towards a multi-scale approach to the simulation of silicon hetero-junction solar cells. J. Green Eng. 5(4), 11–32 (2016)CrossRefGoogle Scholar
  2. 2.
    Andersen, H.C.: Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 72(4), 2384–2393 (1980)CrossRefGoogle Scholar
  3. 3.
    Becke, A.D., Edgecombe, K.E.: A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92(9), 5397–5403 (1990)CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Deslippe, J., Samsonidze, G., Strubbe, D.A., Jain, M., Cohen, M.L., Louie, S.G.: BerkeleyGW: a massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comput. Phys. Commun. 183(6), 1269–1289 (2012)CrossRefGoogle Scholar
  6. 6.
    Ehrenreich, H.: The Optical Properties of Solids. Academic, New York (1965)Google Scholar
  7. 7.
    Favre, M., Curtins, H., Shah, A.: Study of surface/interface and bulk defect density in a-Si: H by means of photothermal de ection spectroscopy and photoconductivity. J. Non-Cryst. Solids 97, 731–734 (1987)CrossRefGoogle Scholar
  8. 8.
    George, B.M., Behrends, J., Schnegg, A., Schulze, T.F., Fehr, M., Korte, L., Rech, B., Lips, K., Rohrmüller, M., Rauls, E., Schmidt, W.G., Gerstmann, U.: Atomic structure of interface states in silicon heterojunction solar cells. Phys. Rev. Lett. 110, 136803 (2013)CrossRefGoogle Scholar
  9. 9.
    Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Corso, A.D., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21(39), 395502 (2009)Google Scholar
  10. 10.
    Godby, R.W., Schlüter, M., Sham, L.J.: Self-energy operators and exchange-correlation potentials in semiconductors. Phys. Rev. B 37, 10159–10175 (1988)CrossRefGoogle Scholar
  11. 11.
    Goedecker, S., Teter, M., Hutter, J.: Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996)CrossRefGoogle Scholar
  12. 12.
    Hartwigsen, C., Goedecker, S., Hutter, J.: Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 58, 3641–3662 (1998)CrossRefGoogle Scholar
  13. 13.
    Hedin, L.: New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev. 139, A796–A823 (1965)CrossRefGoogle Scholar
  14. 14.
    Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hybertsen, M.S., Louie, S.G.: Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986)CrossRefGoogle Scholar
  16. 16.
    Hybertsen, M.S., Louie, S.G.: First-principles theory of quasiparticles: calculation of Band gaps in semiconductors and insulators. Phys. Rev. Lett. 55, 1418–1421 (1985)CrossRefGoogle Scholar
  17. 17.
    Jarolimek, K., de Groot, R.A., de Wijs, G.A., Zeman, M.: First-principles study of hydrogenated amorphous silicon. Phys. Rev. B 79, 155206 (2009)CrossRefGoogle Scholar
  18. 18.
    Johlin, E., Wagner, L.K., Buonassisi, T., Grossman, J.C.: Origins of structural hole traps in hydrogenated amorphous silicon. Phys. Rev. Lett. 110, 146805 (2013)CrossRefGoogle Scholar
  19. 19.
    Jülich Supercomputing Centre: JURECA: general-purpose supercomputer at Jülich supercomputing centre. J. Large-Scale Res. Facil. 2, A62 (2016)Google Scholar
  20. 20.
  21. 21.
    Khomyakov, P.A., Andreoni, W., Afify, N.D., Curioni, A.: Large-scale simulations of \(\alpha \)-Si: H: the origin of midgap states revisited. Phys. Rev. Lett. 107, 255502 (2011)CrossRefGoogle Scholar
  22. 22.
    Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Krack, M.: Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theoret. Chem. Acc. 114(1), 145–152 (2005)CrossRefGoogle Scholar
  24. 24.
    Larson, P., Dvorak, M., Wu, Z.: Role of the plasmon-pole model in the GW approximation. Phys. Rev. B 88, 125205 (2013)CrossRefGoogle Scholar
  25. 25.
    Lundqvist, B.I.: Single-particle spectrum of the degenerate electron gas. Physik der Kondensierten Materie 6(3), 193–205 (1967)Google Scholar
  26. 26.
    Nolan, M., Legesse, M., Fagas, G.: Surface orientation effects in crystalline-amorphous silicon interfaces. Phys. Chem. Chem. Phys. 14, 15173 (2012)CrossRefGoogle Scholar
  27. 27.
    Overhauser, A.W.: Simplified theory of electron correlations in metals. Phys. Rev. B 3, 1888–1898 (1971)CrossRefGoogle Scholar
  28. 28.
    Perdew, J.P.: Density functional theory and the band gap problem. Int. J. Quantum Chem. 28(S19), 497–523 (1985)CrossRefGoogle Scholar
  29. 29.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRefGoogle Scholar
  30. 30.
    Ponti, G., Palombi, F., Abate, D., Ambrosino, F., Aprea, G., Bastianelli, T., Beone, F., Bertini, R., Bracco, G., Caporicci, M., Calosso, B., Chinnici, M., Colavincenzo, A., Cucurullo, A., Dangelo, P., Rosa, M.D., Michele, P.D., Funel, A., Furini, G., Giammattei, D., Giusepponi, S., Guadagni, R., Guarnieri, G., Italiano, A., Magagnino, S., Mariano, A., Mencuccini, G., Mercuri, C., Migliori, S., Ornelli, P., Pecoraro, S., Perozziello, A., Pierattini, S., Podda, S., Poggi, F., Quintiliani, A., Rocchi, A., Sció, C., Simoni, F., Vita, A.: The role of medium size facilities in the HPC ecosystem: the case of the new CRESCO4 cluster integrated in the ENEAGRID infrastructure. In: 2014 International Conference on High Performance Computing Simulation (HPCS), pp. 1030–1033 (2014)Google Scholar
  31. 31.
  32. 32.
    Savin, A., Jepsen, O., Flad, J., Andersen, O.K., Preuss, H., von Schnering, H.G.: Electron localization in solid-state structures of the elements: the diamond structure. Angew. Chem. Int. Ed. Engl. 31(2), 187–188 (1992)CrossRefGoogle Scholar
  33. 33.
    Shockley, W., Read, W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952)CrossRefzbMATHGoogle Scholar
  34. 34.
    VandeVondele, J., Hutter, J.: An efficient orbital transformation method for electronic structure calculations. J. Chem. Phys. 118(10), 4365–4369 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Philippe Czaja
    • 1
    Email author
  • Massimo Celino
    • 2
  • Simone Giusepponi
    • 2
  • Michele Gusso
    • 3
  • Urs Aeberhard
    • 1
  1. 1.IEK-5 PhotovoltaikForschungszentrum JülichJülichGermany
  2. 2.ENEAC.R. CasacciaRomeItaly
  3. 3.ENEAC.R. BrindisiBrindisiItaly

Personalised recommendations