Carbon Capture and Storage in Geologic Formations

  • David A.N. Ussiri
  • Rattan Lal


Carbon dioxide (CO2) emissions, the most important anthropogenic greenhouse gas (GHG), can be reduced by CO2 capture and storage (CCS). This strategy is applicable to many large stationary sources including power generation plants, oil and gas refinery, cement production and other industrial sectors generating large point source of CO2. While the technology for CCS is currently available, significant improvements are needed to enhance confidence in storage security. In 1996, the first CCS project established for the purpose of mitigation of CO2 emission began injecting CO2 into deep geological formation in offshore aquifer in the North Sea, Norway. Since that time, science has advanced in areas such as geophysics, chemical engineering, monitoring and verification, and other areas, while also governments have funded demonstration projects at various sizes ranging from small-scale proof of concept to industrial-scale demonstration projects. Five industrial-scale CCS projects are currently operational globally with more than 0.035 Pg of CO2 captured and stored since 1996. Observations from these industrial scale projects and commercial CO2 enhanced oil recovery (CO2-EOR), engineered natural analogues as well as theoretical consideration, models and laboratory studies have suggested that appropriately selected and well managed CCS sites are likely to retain almost all of injected CO2 for long time and provide the benefits for the intended purpose of CCS. However, CCS is still struggling to gain foothold as one of the main options for mitigating climate change due to high costs, advances in other options including renewable energy, as well as discovery of shale natural gas and the associated hydrological fracturing extraction techniques, absence of international action by governments and private sectors on climate change, economic crisis-induced low carbon (C) prices, and public skepticism. The estimated costs for CCS varies widely depending on the application—such as gas clean-up versus electricity generation, type of fuel, capture technology , and assumptions about the baseline technology. Generally, for current technology, CCS would increase cost of generating electricity by 50–100%, and parasitic energy requirement of 15–30%. In this case, capital costs and energy requirements are the major cost drivers. In addition, significant scale-up compared to existing CCS activities will be needed to achieve intended large reductions of CO2 emissions. For example, a 5- to 10-fold scale-up in the size of individual projects is needed to capture and store emissions from a typical coal-fired power plant of 500–1000 MW, while a thousand-fold scale-up in size of current CCS enterprise would be needed to reduce emissions by 1 Pg C yr−1. The estimated global oil and gas reservoirs are 1000 Pg CO2, saline aquifers global potential capacity ranges from 4000 to 23,000 Pg CO2. However, there is considerable debate about how much storage capacity actually exists and is available for CCS, particularly in saline aquifers. Research, improved geological assessments and commercial scale demonstration projects will be needed to verify the estimated capacity and improve confidence in storage capacity estimates.


Carbon capture technologies Coal-fired plants Geological carbon sequestration Saline aquifers Enhanced oil recovery Seismicity 


  1. Adams EE, Caldeira K (2008) Ocean storage of CO2. Elements 4(5):319–324. doi: 10.2113/gselements.4.5.319 CrossRefGoogle Scholar
  2. Aines RD, Leach MJ, Weisgraber TH, Simpson MD, Friedmann SJ, Bruton CJ (2009) Quantifying the potential exposure hazard due to energetic releases of CO2 from a failed sequestration well. Energy Proc 1(1):2421–2429. doi: 10.1016/j.egypro.2009.02.003 CrossRefGoogle Scholar
  3. APS (2011) Direct air capture of CO2 with chemicals. A technology assessment for the American Physical Society panel on public affairs. Report. American Physical Society (APS), panel on public affairs, p 91. On line at
  4. Aradottir ESP, Sigurdardottir H, Sigfusson B, Gunnlaugsson E (2011) CarbFix: a CCS pilot project imitating and accelerating natural CO2 sequestration. Greenh Gas Sci Technol 1(2):105–118. doi: 10.1002/ghg.18 CrossRefGoogle Scholar
  5. Arts R, Chadwick A, Eiken O, Thibeau S, Nooner S (2008) Ten years’ experience of monitoring CO2 injection in the Utsira Sand at Sleipner, offshore Norway. First Break 26(1):65–75Google Scholar
  6. Bachu S, Celia MA (2009) Assessing the potential for CO2 leakage, particularly through wells, from geological storage sites. In: McPherson BJ, Sundquist ET (eds) Carbon sequestration and its role in the global carbon cycle. Geophysical monograph series, vol 183. American Geophysical Union, Washington, DC, pp 203–216. doi: 10.1029/2005GM000338
  7. Bachu S, Bonijoly D, Bradshaw J, Burruss R, Holloway S, Christensen NP, Mathiassen OM (2007) CO2 storage capacity estimation: methodology and gaps. Int J Greenh Gas Control 1(4):430–443. doi: 10.1016/s1750-5836(07)00086-2 CrossRefGoogle Scholar
  8. Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi OM (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319(5865):939–943. doi: 10.1126/science.1152516 CrossRefGoogle Scholar
  9. Benson SM, Cole DR (2008) CO2 sequestration in deep sedimentary formations. Elements 4(5):325–331. doi: 10.2113/gselements.4.5.325 CrossRefGoogle Scholar
  10. Benson SM, Cook P, Anderson J, Bachu S, Nimir BH, Basu B, Bradshaw J, Deguchi G, Gale J, von Goerne G, Heidug W, Holloway S, Kamal R, Keith DW, Lloyd P, Rocha P, Senior B, Thomson J, Torp T, Wildenborg T, Wilson M, Zarlenga F, Zhou D (2005) Underground geological storage. In: Metz B, Davidson O, Coninck HCD, Loos M, Meyer LA (eds) IPCC special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge, UK, pp 195–276Google Scholar
  11. Benson SM, Bennaceur K, Cook P, Davison J, de Coninck H, Farhat K, Ramirez A, Simbeck D, Surles T, Verma P, Wright I (2012) Carbon capture and storage. In: Johansson TB, Nakicenovic N, Patwardhan A, Gomez-Echeverri L (eds) Global energy assessment: toward a sustainable future. Cambridge University Press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria, pp 993–1068Google Scholar
  12. Bergmann P, Schmidt-Hattenberger C, Kiessling D, Rücker C, Labitzke T, Henninges J, Baumann G, Schütt H (2012) Surface-downhole electrical resistivity tomography applied to monitoring of CO2 storage at Ketzin, Germany. Geophysics 77(6):B253–B267CrossRefGoogle Scholar
  13. Birkholzer JT, Zhou Q, Tsang C-F (2009) Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on pressure response in stratified systems. Int J Greenh Gas Control 3(2):181–194. doi: 10.1016/j.ijggc.2008.08.002 CrossRefGoogle Scholar
  14. Boot-Handford ME, Abanades JC, Anthony EJ, Blunt MJ, Brandani S, Mac Dowell N, Fernandez JR, Ferrari MC, Gross R, Hallett JP, Haszeldine RS, Heptonstall P, Lyngfelt A, Makuch Z, Mangano E, Porter RTJ, Pourkashanian M, Rochelle GT, Shah N, Yao JG, Fennell PS (2014) Carbon capture and storage update. Energy Environ Sci 7(1):130–189. doi: 10.1039/c3ee42350f CrossRefGoogle Scholar
  15. BP (2015) BP statistical review of world energy, June 2015. Report, 64th edn. BP plc, London, UK, p 48Google Scholar
  16. Bradshaw J, Bachu S, Bonijoly D, Burruss R, Holloway S, Christensen NP, Mathiassen OM (2007) CO2 storage capacity estimation: issues and development of standards. Int J Greenh Gas Control 1(1):62–68. doi: 10.1016/S1750-5836(07)00027-8 CrossRefGoogle Scholar
  17. Breitbarth E, Achterberg EP, Ardelan MV, Baker AR, Bucciarelli E, Chever F, Croot PL, Duggen S, Gledhill M, Hassellov M, Hassler C, Hoffmann LJ, Hunter KA, Hutchins DA, Ingri J, Jickells T, Lohan MC, Nielsdottir MC, Sarthou G, Schoemann V, Trapp JM, Turner DR, Ye Y (2010) Iron biogeochemistry across marine systems—progress from the past decade. BioGeosciences 7(3):1075–1097. doi: 10.5194/bg-7-1075-2010 CrossRefGoogle Scholar
  18. Broecker WS (2007) Climate change—CO2 arithmetic. Science 315(5817):1371. doi: 10.1126/science.1139585 CrossRefGoogle Scholar
  19. Bruckner T, Bashmakov IA, Mulugetta Y, Chum H, Navarro ADLV, Edmonds J, Faaij A, Fungtammasan B, Garg A, Hertwich E, Honnery D, Infield D, Kainuma M, Khennas S, Kim S, Nimir HB, Riahi K, Strachan N, Wiser R, Zhang X (2014) Energy systems. In: Edenhofer O, Pichs-Madruga R, Sokona Y et al (eds) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 511–597Google Scholar
  20. Buesseler KO, Andrews JE, Pike SM, Charette MA (2004) The effects of iron fertilization on carbon sequestration in the Southern Ocean. Science 304(5669):414–417. doi: 10.1126/science.1086895 CrossRefGoogle Scholar
  21. Buesseler KO, Doney SC, Karl DM, Boyd PW, Caldeira K, Chai F, Coale KH, de Baar HJW, Falkowski PG, Johnson KS, Lampitt RS, Michaels AF, Naqvi SWA, Smetacek V, Takeda S, Watson AJ (2008) Environment—ocean iron fertilization—moving forward in a sea of uncertainty. Science 319(5860):162. doi: 10.1126/science.1154305 CrossRefGoogle Scholar
  22. Burruss RC et al (2009) Development of a probabilistic assessment methodology for evaluation of carbon dioxide storage. US Geological Survey Open-File Report 2009-1035, available online only at Report
  23. Caldeira K, Brewer B, Chen B, Haugan P, Iwama T, Johnston P, Kheshgi H, Li Q, Ohsumi A, Pörtner H, Sabine C, Shirayama Y, Thomson J (2005) Ocean storage. In: Metz B, Davidson O, Coninck HCD, Loos M, Meyer LA (eds) IPCC special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge, UK, pp 277–318Google Scholar
  24. Cao L, Caldeira K (2010) Atmospheric carbon dioxide removal: long-term consequences and commitment. Environ Res Lett 5(2). doi: 10.1088/1748-9326/5/2/024011
  25. Cavanagh AJ, Haszeldine RS, Blunt MJ (2010) Open or closed? A discussion of the mistaken assumptions in the Economides pressure analysis of carbon sequestration. J Petrol Sci Eng 74(1–2):107–110. doi: 10.1016/j.petrol.2010.08.017 CrossRefGoogle Scholar
  26. Chadwick A, Smith D, Hodrien C, Hovorka S, Mackay E, Mathias S, Lovell B, Kalaydjian F, Sweeney G, Benson S (2010) The realities of storing carbon dioxide—a response to CO2 storage capacity issues raised by Ehlig-Economides & Economides. In: Nature preceding prepublication and preliminary findings, pp 1–10. doi: 10.1038/npre.2010.4500.1
  27. Cicerone RJ (2006) Geoengineering: encouraging research and overseeing implementation. Clim Change 77(3–4):221–226. doi: 10.1007/s10584-006-9102-x CrossRefGoogle Scholar
  28. Coale KH, Johnson KS, Chavez FP, Buesseler KO, Barber RT, Brzezinski MA, Cochlan WP, Millero FJ, Falkowski PG, Bauer JE, Wanninkhof RH, Kudela RM, Altabet MA, Hales BE, Takahashi T, Landry MR, Bidigare RR, Wang XJ, Chase Z, Strutton PG, Friederich GE, Gorbunov MY, Lance VP, Hilting AK, Hiscock MR, Demarest M, Hiscock WT, Sullivan KF, Tanner SJ, Gordon RM, Hunter CN, Elrod VA, Fitzwater SE, Jones JL, Tozzi S, Koblizek M, Roberts AE, Herndon J, Brewster J, Ladizinsky N, Smith G, Cooper D, Timothy D, Brown SL, Selph KE, Sheridan CC, Twining BS, Johnson ZI (2004) Southern ocean iron enrichment experiment: carbon cycling in high- and low-Si waters. Science 304(5669):408–414. doi: 10.1126/science.1089778 CrossRefGoogle Scholar
  29. Couëslan M, Ali S, Campbell A, Nutt W, Leaney W, Finley R, Greenberg S (2013) Monitoring CO2 injection for carbon capture and storage using time-lapse 3D VSPs. Lead Edge 32(10):1268–1276CrossRefGoogle Scholar
  30. Creutzig F, Ravindranath NH, Berndes G, Bolwig S, Bright R, Cherubini F, Chum H, Corbera E, Delucchi M, Faaij A, Fargione J, Haberl H, Heath G, Lucon O, Plevin R, Popp A, Robledo-Abad C, Rose S, Smith P, Stromman A, Suh S, Masera O (2015) Bioenergy and climate change mitigation: an assessment. GCB Bioenergy 7(5):916–944. doi: 10.1111/gcbb.12205 CrossRefGoogle Scholar
  31. de Coninck H, Benson SM (2014) Carbon dioxide capture and storage: issues and prospects. In: Gadgil A, Liverman DM (eds) Annual review of environment and resources, vol 39, pp 243–270. doi: 10.1146/annurev-environ-032112-095222
  32. DOE (2012) Carbon sequestration atlas of the United States and Canada, 4th edn. Report. Department of Energy, Washington, DCGoogle Scholar
  33. DOE/NETL (2010) DOE/NETL carbon dioxide capture and storage RD&D roadmap. Report. United States Department of Energy, National Energy Technology Laboratory, Washington, DC, p 78
  34. Dooley JJ, Dahowski RT, Davidson CL, Wise MA, Gupta N, Kim SH, Malone EL (2006) Carbon dioxide capture and geologic storage: a core element of a global energy technology strategy to address climate change. Report. Battelle Memorial Institute, Columbus, OHGoogle Scholar
  35. Dooley JJ, Dahowski RT, Davidson CL (2010) CO2-driven enhanced oil recovery as a stepping stone to what?, report. Pacific Northwest National Laboratory, Richland, WACrossRefGoogle Scholar
  36. Doughty C, Myer LR (2009) Scoping calculations on leakage of CO2 in geologic storage: the impact of overburden permeability, phase trapping, and dissolution. In: McPherson BJ, Sundquist ET (eds) Carbon sequestration and its role in the global carbon cycle. Geophysical monograph series, vol 183. American Geophysical Union, Washington, DC, pp 217–237. doi: 10.1029/2005GM000343
  37. Du N, Park HB, Robertson GP, Dal-Cin MM, Visser T, Scoles L, Guiver MD (2011) Polymer nanosieve membranes for CO2-capture applications. Nat Mater 10(5):372–375. doi: 10.1038/nmat2989 CrossRefGoogle Scholar
  38. Ehlig-Economides C, Economides MJ (2010) Sequestering carbon dioxide in a closed underground volume. J Petrol Sci Eng 70(1–2):123–130. doi: 10.1016/j.petrol.2009.11.002 CrossRefGoogle Scholar
  39. Emberley S, Hutcheon I, Shevalier M, Durocher K, Mayer B, Gunter WD, Perkins EH (2005) Monitoring of fluid–rock interaction and CO2 storage through produced fluid sampling at the Weyburn CO2-injection enhanced oil recovery site, Saskatchewan, Canada. Appl Geochem 20(6):1131–1157. doi: 10.1016/j.apgeochem.2005.02.007 CrossRefGoogle Scholar
  40. Evans WC, Sorey ML, Kennedy BM, Stonestrom DA, Rogie JD, Shuster DL (2001) High CO2 emissions through porous media: transport mechanisms and implications for flux measurement and fractionation. Chem Geol 177(1–2):15–29. doi: 10.1016/s0009-2541(00)00379-x CrossRefGoogle Scholar
  41. Feely RA, Orr J, Fabry VJ, Kleypas JA, Sabine CL, Langdon C (2009) Present and future changes in seawater chemistry due to ocean acidification. In: McPherson BJ, Sundquist ET (eds) Carbon sequestration and its role in the global carbon cycle. Geophysical monograph series, vol 183. American Geophysical Union, pp 175–188. doi: 10.1029/2005GM000337
  42. Fessenden JE, Stauffer PH, Viswanathan HS (2009) Natural analogs of geologic CO2 sequestration: some general implications for engineered sequestration. In: McPherson BJ, Sundquist ET (eds) Carbon sequestration and its role in the global carbon cycle. Geophysical monograph series, vol 183. American Geophysical Union, Washington, DC, pp 135–146. doi: 10.1029/2006GM000384
  43. Folger P (2013) Carbon capture: a technology assessment, congressional research service report. Report No. 7-5700 USA Congress, Congressional Research Service, Washington, DC, p 99Google Scholar
  44. Frohlich C (2012) Two-year survey comparing earthquake activity and injection-well locations in the Barnett Shale, Texas. Proc Natl Acad Sci USA 109(35):13934–13938CrossRefGoogle Scholar
  45. Gale J, Herzog H, Braitsch J, Essandoh-Yeddu J, Gülen G (2009) Greenhouse gas control technologies economic modeling of carbon dioxide integrated pipeline network for enhanced oil recovery and geologic sequestration in the Texas Gulf Coast region. Energy Proc 1(1):1603–1610. doi: 10.1016/j.egypro.2009.01.210 CrossRefGoogle Scholar
  46. Gasda SE, Bachu S, Celia MA (2004) Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin. Environ Geol 46(6–7):707–720. doi: 10.1007/s00254-004-1073-5 CrossRefGoogle Scholar
  47. GCCSI (2016) Global carbon capture and storage projects. Global Carbon Capture and Storage Institute (GCCSI), Docklands, Australia. Accessed Apr 2016
  48. Gibbins J, Chalmers H (2008a) Carbon capture and storage. Energy Policy 36(12):4317–4322. doi: 10.1016/j.enpol.2008.09.058 CrossRefGoogle Scholar
  49. Gibbins J, Chalmers H (2008b) Preparing for global rollout: a ‘developed countries first’ demonstration programme for rapid CCS deployment. Energy Policy 36:501–507CrossRefGoogle Scholar
  50. Gilfillan SMV, Lollar BS, Holland G, Blagburn D, Stevens S, Schoell M, Cassidy M, Ding Z, Zhou Z, Lacrampe-Couloume G, Ballentine CJ (2009) Solubility trapping in formation water as dominant CO2 sink in natural gas fields. Nature 458(7238):614–618. doi: 10.1038/nature07852 CrossRefGoogle Scholar
  51. Goff F, Lackner KS (1998) Carbon dioxide sequestering using ultramafic rocks. Environ Geosci 5(3):89–101CrossRefGoogle Scholar
  52. Gollakota S, McDonald S (2012) CO2 capture from ethanol production and storage into the Mt Simon Sandstone. Greenh Gas Sci Technol 2(5):346–351. doi: 10.1002/ghg.1305 CrossRefGoogle Scholar
  53. Goodrich B, Seo S, Wilson L, Ficke L, Massel M, Zadigian D, Brennecke JF (2010) Ionic liquids with aprotic heterocyclic anions for post-combustion CO2 capture. Abstracts of papers of the American Chemical Society, p 240Google Scholar
  54. Guinotte JM, Fabry VJ (2008) Ocean acidification and its potential effects on marine ecosystems. Ann NY Acad Sci 1134(1):320–342CrossRefGoogle Scholar
  55. Gunter WD, Gentzis T, Rottenfusser BA, Richardson RJH (1997) Deep coalbed methane in Alberta, Canada: a fuel resource with the potential of zero greenhouse gas emissions. Energy Convers Manag 38:S217–S222. doi: 10.1016/s0196-8904(96)00272-5 CrossRefGoogle Scholar
  56. Gunter WD, Bachu S, Benson S (2004) The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide. Geol Soc Lond Spec Publ 233(1):129–145. doi: 10.1144/gsl.sp.2004.233.01.09 CrossRefGoogle Scholar
  57. Han C, Zahid U, An J, Kim K, Kim C (2015) CO2 transport: design considerations and project outlook. Curr Opin Chem Eng 10:42–48. doi: 10.1016/j.coche.2015.08.001 CrossRefGoogle Scholar
  58. Hasan MMF, First EL, Floudas CA (2013) Cost-effective CO2 capture based on in silico screening of zeolites and process optimization. Phys Chem Chem Phys 15(40):17601–17618. doi: 10.1039/c3cp53627k CrossRefGoogle Scholar
  59. Hawkes CD, Bachu S, McLellan PJ (2005) Geomechanical factors affecting geological storage of CO2 in depleted oil and gas reservoirs. J Can Petrol Techol 44(10):52–61Google Scholar
  60. Heath JE, Lachmar TE, Evans JP, Kolesar PT, Williams AP (2009) Hydrogeochemical characterization of leaking, carbon dioxide-charged fault zones in East-Central Utah, with implications for geologic carbon storage. In: McPherson BJ, Sundquist ET (eds) Carbon sequestration and its role in the global carbon cycle. Geophysical monograph series, vol 183. American Geophysical Union, Washington, DC, pp 147–158. doi: 10.1029/2006GM000407
  61. Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328(5985):1523–1528CrossRefGoogle Scholar
  62. Holloway S (2008) Sequestration—the underground storage of carbon dioxide. In: Moniz EJ (ed) Climate change and energy pathways for the mediterranean: workshop proceedings, cyprus. Springer Netherlands, Dordrecht, pp 61–88. doi: 10.1007/978-1-4020-5774-8_4
  63. Horn FL, Steinberg M (1982) Control of carbon dioxide emissions from power plant (and use in enhanced oil recovery). Fuel 61:415–422CrossRefGoogle Scholar
  64. House KZ, Schrag DP, Harvey CF, Lackner KS (2006) Permanent carbon dioxide storage in deep-sea sediments. Proc Natl Acad Sci USA 103(33):12291–12295. doi: 10.1073/pnas.0605318103 CrossRefGoogle Scholar
  65. House KZ, Baclig AC, Ranjan M, van Nierop EA, Wilcox J, Herzog HJ (2011) Economic and energetic analysis of capturing CO2 from ambient air. Proc Natl Acad Sci USA 108(51):20428–20433. doi: 10.1073/pnas.1012253108 CrossRefGoogle Scholar
  66. Hovorka SD, Benson SM, Doughty C, Freifeld BM, Sakurai S, Daley TM, Kharaka YK, Holtz MH, Trautz RC, Nance HS, Myer LR, Knauss KG (2006) Measuring permanence of CO2 storage in saline formations: the Frio experiment. Environ Geosci 13(2):105–121. doi: 10.1306/eg.11210505011 CrossRefGoogle Scholar
  67. Hovorka SD, Meckel TA, Treviño RH (2013) Monitoring a large-volume injection at Cranfield, Mississippi—project design and recommendations. Int J Greenh Gas Control 18:345–360. doi: 10.1016/j.ijggc.2013.03.021 CrossRefGoogle Scholar
  68. Ide ST, Jessen K, Orr FM Jr (2007) Storage of CO2 in saline aquifers: effects of gravity, viscous, and capillary forces on amount and timing of trapping. Int J Greenh Gas Control 1(4):481–491. doi: 10.1016/s1750-5836(07)00091-6 CrossRefGoogle Scholar
  69. IEA (2004) Prospects of CO2 capture and storage. Report. International Energy Agency (IEA), Paris, France,
  70. IEA (2008) CO2 capture and storage: a key carbon abatement option. Organization for Economic Cooperation (OEC) and International Energy Agency (IEA), Paris, FranceGoogle Scholar
  71. IEA (2009) Technology roadmap: carbon capture and storage. Report. International Energy Agency (IEA), Paris, France,
  72. IEA (2013) Technology roadmap: carbon capture and storage. Report. International Energy Agency (IEA), Paris, France, p 60. On line at
  73. IEA (2014) CO2 emissions from fossil fuel combustion OECD. International Energy Agency, Paris, FranceGoogle Scholar
  74. IEA (2015a) Energy and climate change. World energy outlook special report. OECD/IEA, Paris, FranceGoogle Scholar
  75. IEA (2015b) Key word energy statistics 2015. OECD/IEA, Paris, FranceCrossRefGoogle Scholar
  76. IEA (2015c) World energy outlook 2015. Report. International Energy Agency (IEA) of the Organization for Economic Cooperation and Development (OECD), Paris, FranceGoogle Scholar
  77. IEA (2016) Carbon dioxide emissions from fossil fuel combustion (2016 edn). OECD/International Energy Agency (IEA), Paris, FranceGoogle Scholar
  78. IPCC (1995) Climate change 1995. Impacts, adaptations and mitigation of climate change: scientific technical analysis. Contribution of working group II to the second assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, New York, USAGoogle Scholar
  79. IPCC (2001) Climate change 2001: working group III: mitigation. Cambridge University Press, Cambridge, UK, New York, USAGoogle Scholar
  80. IPCC (2005) IPCC special report on carbon dioxide capture and storage. In: Metz B, Davidson O, de Coninck HC, Loos M, Meyer LA (eds) Prepared by working group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, and New York, USAGoogle Scholar
  81. IPCC (2011) Renewable energy sources and climate change mitigation. In: Edenhofer O, Madruga RP, Sokona Y et al (eds). Cambridge University Press, Cambridge, UKGoogle Scholar
  82. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K et al (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  83. IPCC (2014) Climate change 2014: mitigation of climate change. In: Edenhofer O, Pichs-Madruga R, Sokona Y et al (eds) Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 1419Google Scholar
  84. Irlam L (2015) The costs of CCS and other low-carbon technologies in the United States: 2015 update. Report. Global Carbon Capture and Storage Institute Canberra, Australia, p 19. On line at:
  85. Jaccard M (2005) Sustainable fossil fuels. Cambridge University Press, Cambridge, UKGoogle Scholar
  86. Jenkins CR, Cook PJ, Ennis-King J, Undershultz J, Boreham C, Dance T, de Caritat P, Etheridge DM, Freifeld BM, Hortle A (2012) Safe storage and effective monitoring of CO2 in depleted gas fields. Proc Natl Acad Sci USA 109(2):E35–E41CrossRefGoogle Scholar
  87. Juanes R, MacMinn CW, Szulczewski ML (2010) The footprint of the CO2 plume during carbon dioxide storage in saline aquifers: storage efficiency for capillary trapping at the basin scale. Transp Porous Med 82(1):19–30. doi: 10.1007/s11242-009-9420-3 CrossRefGoogle Scholar
  88. Jung Y, Zhou Q, Birkholzer JT (2013) Early detection of brine and CO2 leakage through abandoned wells using pressure and surface-deformation monitoring data: concept and demonstration. Adv Water Resour 62:555–569. doi: 10.1016/j.advwatres.2013.06.008 CrossRefGoogle Scholar
  89. Kaszuba JP, Janecky DR (2009) Geochemical impacts of sequestering carbon dioxide in brine formations. In: McPherson BJ, Sundquist ET (eds) Carbon sequestration and its role in the global carbon cycle. Geophysical monograph series, vol 183. American Geophysical Union, Washington, DC, pp 239–247. doi: 10.1029/2006GM000353
  90. Kharaka YK, Cole DR, Hovorka SD, Gunter WD, Knauss KG, Freifeld BM (2006a) Gas-water-rock interactions in Frio Formation following CO2 injection: implications for the storage of greenhouse gases in sedimentary basins. Geology 34(7):577–580. doi: 10.1130/g22357.1 CrossRefGoogle Scholar
  91. Kharaka YK, Cole DR, Thordsen JJ, Kakouros E, Nance HS (2006b) Gas-water-rock interactions in sedimentary basins: CO2 sequestration in the Frio Formation, Texas, USA. J Geochem Explor 89(1–3):183–186. doi: 10.1016/j.gexplo.2005.11.077 CrossRefGoogle Scholar
  92. Kheshgi HS (1995) Sequestering atmospheric carbon-dioxide by increasing ocean alkalinity. Energy 20(9):915–922. doi: 10.1016/0360-5442(95)00035-f CrossRefGoogle Scholar
  93. Kheshgi H, Smith S, Edmonds J (2005) Emissions and atmospheric CO2 stabilization: long-term limits and paths. Mitig Adapt Strat Glob Change 10(2):213–220. doi: 10.1007/s11027-005-3783-8 CrossRefGoogle Scholar
  94. Koornneef J, Spruijt M, Molag M, Ramirez A, Turkenburg W, Faaij A (2010) Quantitative risk assessment of CO2 transport by pipelines—a review of uncertainties and their impacts. J Hazard Mater 177(1–3):12–27. doi: 10.1016/j.jhazmat.2009.11.068 CrossRefGoogle Scholar
  95. Koschel D, Coxam J-Y, Rodier L, Majer V (2006) Enthalpy and solubility data of CO2 in water and NaCl(aq) at conditions of interest for geological sequestration. Fluid Phase Equilib 247(1–2):107–120. doi: 10.1016/j.fluid.2006.06.006 CrossRefGoogle Scholar
  96. Krevor S, Perrin J-C, Esposito A, Rella C, Benson S (2010) Rapid detection and characterization of surface CO2 leakage through the real-time measurement of δ13C signatures in CO2 flux from the ground. Int J Greenh Gas Control 4(5):811–815. doi: 10.1016/j.ijggc.2010.05.002 CrossRefGoogle Scholar
  97. Krevor SCM, Pini R, Zuo L, Benson SM (2012) Relative permeability and trapping of CO2 and water in sandstone rocks at reservoir conditions. Water Resour Res 48. doi: 10.1029/2011wr010859
  98. Lackner KS (2002) Carbonate chemistry for sequestering fossil carbon. Annu Rev Energy 27:193–232. doi: 10.1146/ CrossRefGoogle Scholar
  99. Lackner KS, Butt DP, Wendt CH (1997) Progress on binding CO2 in mineral substrates. Energy Convers Manag 38:S259–S264. doi: 10.1016/s0196-8904(96)00279-8 CrossRefGoogle Scholar
  100. Le Quéré C, Moriarty R, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Friedlingstein P, Peters GP, Andres RJ, Boden TA, Houghton RA, House JI, Keeling RF, Tans P, Arneth A, Bakker DCE, Barbero L, Bopp L, Chang J, Chevallier F, Chini LP, Ciais P, Fader M, Feely RA, Gkritzalis T, Harris I, Hauck J, Ilyina T, Jain AK, Kato E, Kitidis V, Goldewijk KK, Koven C, Landschuetzer P, Lauvset SK, Lefevre N, Lenton A, Lima ID, Metzl N, Millero F, Munro DR, Murata A, Nabel JEMS, Nakaoka S, Nojiri Y, O’Brien K, Olsen A, Ono T, Perez FF, Pfeil B, Pierrot D, Poulter B, Rehder G, Roedenbeck C, Saito S, Schuster U, Schwinger J, Seferian R, Steinhoff T, Stocker BD, Sutton AJ, Takahashi T, Tilbrook B, van der Laan-Luijkx IT, van der Werf GR, van Heuven S, Vandemark D, Viovy N, Wiltshire A, Zaehle S, Zeng N (2015) Global carbon budget 2015. Earth Syst Data 7(2):349–396. doi: 10.5194/essd-7-349-2015 CrossRefGoogle Scholar
  101. Le Quéré C, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Peters GP, Manning AC, Boden TA, Tans PP, Houghton RA, Keeling RF, Alin S, Andrews OD, Anthoni P, Barbero L, Bopp L, Chevallier F, Chini LP, Ciais P, Currie K, Delire C, Doney SC, Friedlingstein P, Gkritzalis T, Harris I, Hauck J, Haverd V, Hoppema M, Klein Goldewijk K, Jain AK, Kato E, Körtzinger A, Landschützer P, Lefèvre N, Lenton A, Lienert S, Lombardozzi D, Melton JR, Metzl N, Millero F, Monteiro PMS, Munro DR, Nabel JEMS, Nakaoka SI, O’Brien K, Olsen A, Omar AM, Ono T, Pierrot D, Poulter B, Rödenbeck C, Salisbury J, Schuster U, Schwinger J, Séférian R, Skjelvan I, Stocker BD, Sutton AJ, Takahashi T, Tian H, Tilbrook B, van der Laan-Luijkx IT, van der Werf GR, Viovy N, Walker AP, Wiltshire AJ, Zaehle S (2016) Global carbon budget 2016. Earth Sys Data 8(2):605–649. doi: 10.5194/essd-8-605-2016 CrossRefGoogle Scholar
  102. Lewicki JL, Hilley GE (2009) Eddy covariance mapping and quantification of surface CO2 leakage fluxes. Geophys Res Lett 36. doi: 10.1029/2009gl040775
  103. Lewicki JL, Hilley GE, Tosha T, Aoyagi R, Yamamoto K, Benson SM (2007) Dynamic coupling of volcanic CO2 flow and wind at the Horseshoe Lake tree kill, Mammoth Mountain, California. Geophys Res Lett 34(3). doi: 10.1029/2006gl028848
  104. Lewicki JL, Hilley GE, Fischer ML, Pan L, Oldenburg CM, Dobeck L, Spangler L (2009) Eddy covariance observations of surface leakage during shallow subsurface CO2 releases. J Geophys Res Atmos 114. doi: 10.1029/2008jd011297
  105. Liu GJ, Larson ED, Williams RH, Kreutz TG, Guo XB (2011) Making Fischer-Tropsch fuels and electricity from coal and biomass: performance and cost analysis. Energy Fuels 25:415–437. doi: 10.1021/ef101184e CrossRefGoogle Scholar
  106. Liu X, Godbole A, Lu C, Michal G, Venton P (2015) Study of the consequences of CO2 released from high-pressure pipelines. Atmos Environ 116:51–64. doi: 10.1016/j.atmosenv.2015.06.016 CrossRefGoogle Scholar
  107. Marchetti C (1977) On geoengineering and the CO2 problem. Clim Change 1(1):59–68. doi: 10.1007/BF00162777 CrossRefGoogle Scholar
  108. Martens S, Kempka T, Liebscher A, Lüth S, Möller F, Myrttinen A, Norden B, Schmidt-Hattenberger C, Zimmer M, Kühn M (2012) Europe’s longest-operating on-shore CO2 storage site at Ketzin, Germany: a progress report after three years of injection. Environ Earth Sci 67(2):323–334. doi: 10.1007/s12665-012-1672-5 CrossRefGoogle Scholar
  109. Martini B, Silver E (2002) The evolution and present state of tree kills on Mammoth Mountain, California: tracking volcanogenic CO2 and its lethal effects. In: Proceedings of the 2002 AVIRIS Airborne Geoscience Workshop, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 2002Google Scholar
  110. Mathias PM, Reddy S, O’Connell JP (2010) Quantitative evaluation of the chilled-ammonia process for CO2 capture using thermodynamic analysis and process simulation. Int J Greenh Gas Control 4(2):174–179. doi: 10.1016/j.ijggc.2009.09.016 CrossRefGoogle Scholar
  111. Mathieson A, Midgely J, Wright I, Saoula N, Ringrose P (2011) In Salah CO2 storage JIP: CO2 sequestration monitoring and verification technologies applied at Krechba, Algeria. Energy Proc 4:3596–3603. doi: 10.1016/j.egypro.2011.02.289 CrossRefGoogle Scholar
  112. McGrail BP, Schaef HT, Ho AM, Chien Y-J, Dooley JJ, Davidson CL (2006) Potential for carbon dioxide sequestration in flood basalts. J Geophys Res-Sol Ea 111(B12). doi: 10.1029/2005jb004169
  113. McPherson BJ (2009) Looking ahead: research agenda for the study of carbon sequestration. In: McPherson BJ, Sundquist ET (eds) Carbon sequestration and its role in the global carbon cycle. Geophysical monograph series, vol 183. American Geophysical Union, Washington, DC, pp 335–358. doi: 10.1029/2008GM000792
  114. McPherson B, Cole BS (2000) Multiphase CO2 flow, transport and sequestration in the Powder River Basin, Wyoming, USA. J Geochem Explor 69:65–69. doi: 10.1016/s0375-6742(00)00046-7 CrossRefGoogle Scholar
  115. Michael K, Golab A, Shulakova V, Ennis-King J, Allinson G, Sharma S, Aiken T (2010) Geological storage of CO2 in saline aquifers—a review of the experience from existing storage operations. Int J Greenh Gas Control 4(4):659–667. doi: 10.1016/j.ijggc.2009.12.011 CrossRefGoogle Scholar
  116. NETL (2015) Carbon storage technology website.
  117. Nordbotten JM, Celia MA, Bachu S (2005) Injection and storage of CO2 in deep saline aquifers: analytical solution for CO2 plume evolution during injection. Transp Porous Med 58(3):339–360. doi: 10.1007/s11242-004-0670-9 CrossRefGoogle Scholar
  118. Oelkers EH, Cole DR (2008) Carbon dioxide sequestration: a solution to a global problem. Elements 4(5):305–310. doi: 10.2113/gselements.4.5.305 CrossRefGoogle Scholar
  119. Oelkers EH, Gislason SR, Matter J (2008) Mineral carbonation of CO2. Elements 4(5):333–337. doi: 10.2113/gselements.4.5.333 CrossRefGoogle Scholar
  120. Ohgaki K, Takano K, Sangawa H, Matsubara T, Nakano S (1996) Methane exploitation by carbon dioxide from gas hydrates—phase equilibria for CO2–CH4 mixed hydrate system. J Chem Eng Jpn 29(3):478–483. doi: 10.1252/jcej.29.478 CrossRefGoogle Scholar
  121. Parfomak PW, Folger P, Vann A (2009) Carbon dioxide (CO2) pipelines for carbon sequestration: emerging policy issues. Report. United States Congress, Congressional Research Service, Washington, DC, p 21. Available online at
  122. Pevzner R, Shulakova V, Kepic A, Urosevic M (2011) Repeatability analysis of land time-lapse seismic data: CO2-CRC Otway pilot project case study. Geophys Prospect 59(1):66–77. doi: 10.1111/j.1365-2478.2010.00907.x CrossRefGoogle Scholar
  123. Picard G, Bérard T, Chabora E, Marsteller S, Greenberg S, Finley RJ, Rinck U, Greenaway R, Champagnon C, Davard J (2011) Real-time monitoring of CO2 storage sites: application to Illinois Basin–Decatur project. Energy Proc 4:5594–5598. doi: 10.1016/j.egypro.2011.02.548 CrossRefGoogle Scholar
  124. Rau GH, Caldeira K (1999) Enhanced carbonate dissolution: a means of sequestering waste CO2 as ocean bicarbonate. Energy Convers Manag 40(17):1803–1813. doi: 10.1016/s0196-8904(99)00071-0 CrossRefGoogle Scholar
  125. Riddiford FA, Tourqui A, Bishop CD, Taylor B, Smith M (2003) A cleaner development: the In Salah Gas project, Algeria A2. In: Gale J, Kaya Y (eds) Greenhouse gas control technologies—6th international conference. Pergamon, Oxford, pp 595–600. doi:
  126. Rochelle GT (2009) Amine scrubbing for CO2 capture. Science 325(5948):1652–1654. doi: 10.1126/science.1176731 CrossRefGoogle Scholar
  127. Rubin ES (2008) CO2 capture and transport. Elements 4(5):311–317. doi: 10.2113/gselements.4.5.311 CrossRefGoogle Scholar
  128. Sato K, Mito S, Horie T, Ohkuma H, Saito H, Watanabe J, Yoshimura T (2011) Monitoring and simulation studies for assessing macro- and meso-scale migration of CO2 sequestered in an onshore aquifer: experiences from the Nagaoka pilot site, Japan. Int J Greenh Gas Control 5(1):125–137. doi: 10.1016/j.ijggc.2010.03.003 CrossRefGoogle Scholar
  129. Schrag DP (2009) Storage of carbon dioxide in offshore sediments. Science 325(5948):1658–1659. doi: 10.1126/science.1175750 CrossRefGoogle Scholar
  130. Shah N, Ma S, Wang Y, Huffman GP (2007) Semi-continuous hydrogen production from catalytic methane decomposition using a fluidized-bed reactor. Int J Hydrogen Energy 32(15):3315–3319. doi: 10.1016/j.ijhydene.2007.04.040 CrossRefGoogle Scholar
  131. Simbeck D, Roekpooritat W (2010) Near-term technologies for retrofit CO2 capture and storage of existing coal-fired power plants in the United States. In: White paper for the MIT retrofit symposium, 23 Mar 2009, MIT, 2009. International Energy Agency, OECD/IEA, 2010. On line at:
  132. Spangler LH, Dobeck LM, Repasky KS, Nehrir AR, Humphries SD, Barr JL, Keith CJ, Shaw JA, Rouse JH, Cunningham AB, Benson SM, Oldenburg CM, Lewicki JL, Wells AW, Diehl JR, Strazisar BR, Fessenden JE, Rahn TA, Amonette JE, Barr JL, Pickles WL, Jacobson JD, Silver EA, Male EJ, Rauch HW, Gullickson KS, Trautz R, Kharaka Y, Birkholzer J, Wielopolski L (2010) A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models. Environ Earth Sci 60(2):227–239. doi: 10.1007/s12665-009-0400-2 CrossRefGoogle Scholar
  133. Stephens JC, Keith DW (2008) Assessing geochemical carbon management. Clim Change 90(3):217–242. doi: 10.1007/s10584-008-9440-y CrossRefGoogle Scholar
  134. Stephenson JC (2013) Time to stop investing in carbon capture and storage and reduce government subsidies of fossil fuels. WIREs Clim Change 5(2):169–173CrossRefGoogle Scholar
  135. Stevens SH, Fox C, White T, Melzerand S, Byrer C (2003) Production operations at natural CO2 Fields: Technologies for geologic sequestration. In: Gale J, Kaya Y (eds) Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies (GHGT- 6), vol. I, 1–4 October 2002, Kyoto, Japan, Pergamon, pp 429–433Google Scholar
  136. Sundquist ET, Burruss RC, Faulkner SP, Gleason RA, Harden JW, Kharaka YK, Tieszen LL, Waldrop MP (2008) Carbon sequestration to mitigate climate change. US Geological Survey Fact Sheet 2008-3097Google Scholar
  137. Thambimuthu K, Soltanieh M, Abanades JC, Allam R, Bolland O, Davidson J, Feton P, Goede F, Herrera A, Iijima M, Jansen D, Leites I, Mathieu P, Rubin ES, Simbeck D, Warmuzinki K, Wilkinson M, Williams R (2005) Capture of CO2. In: Metz B, Davidson O, Coninck HCD, Loos M, Meyer LA (eds) IPCC special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge, UK, pp 105–178Google Scholar
  138. Torp TA, Gale J (2004) Demonstrating storage of CO2 in geological reservoirs: the Sleipner and SACS projects. Energy 29(9–10):1361–1369. doi: 10.1016/ CrossRefGoogle Scholar
  139. Tuinier MJ, Annaland MVS, Kramer GJ, Kuipers JAM (2010) Cryogenic CO2 capture using dynamically operated packed beds. Chem Eng Sci 65(1):114–119. doi: 10.1016/j.ces.2009.01.055
  140. Victor DG, Zhou D, Ahmed EHM, Dadhich PK, Olivier JGJ, Rogner H-H, Sheikho K, Yamaguchi M (2014) Introductory chapter. In: Edenhofer O, Pichs-Madruga R, Sokona Y et al (eds) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 111–150Google Scholar
  141. Wang J, Huang L, Yang R, Zhang Z, Wu J, Gao Y, Wang Q, O’Hare D, Zhong Z (2014) Recent advances in solid sorbents for CO2 capture and new development trends. Energy Environ Sci 7(11):3478–3518. doi: 10.1039/c4ee01647e CrossRefGoogle Scholar
  142. White D (2009) Monitoring CO2 storage during EOR at the Weyburn-Midale field. Lead Edge 28(7):838–842CrossRefGoogle Scholar
  143. White D, Burrowes G, Davis T, Hajnal Z, Hirsche K, Hutcheon I, Majer E, Rostron B, Whittaker S (2004) Greenhouse gas sequestration in abandoned oil reservoirs: the International Energy Agency Weyburn pilot project. GSA Today 14(7):4–11CrossRefGoogle Scholar
  144. White SP, Allis RG, Moore J, Chidsey T, Morgan C, Gwynn W, Adams M (2005) Simulation of reactive transport of injected CO2 on the Colorado Plateau, Utah, USA. Chem Geol 217(3–4):387–405. doi: 10.1016/j.chemgeo.2004.12.020 CrossRefGoogle Scholar
  145. Wilcox J (2012) Carbon capture. Springer, New YorkCrossRefGoogle Scholar
  146. Yang A, Cui Y (2012) Global coal risk assessment: data analysis and market research. Report. World Resources Institute, Washington, DC, p 76. On line at
  147. Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20(1):14–27. doi: 10.1016/s1001-0742(08)60002-9 CrossRefGoogle Scholar
  148. Zaman M, Lee JH (2013) Carbon capture from stationary power generation sources: a review of the current status of the technologies. Korean J Chem Eng 30(8):1497–1526. doi: 10.1007/s11814-013-0127-3 CrossRefGoogle Scholar
  149. Zerai B, Saylor BZ, Allen DE (2009) Quantification of CO2 trapping and storage capacity in the subsurface: uncertainty due to solubility models. In: McPherson BJ, Sundquist ET (eds) Carbon sequestration and its role in the global carbon cycle. Geophysical monograph series, vol 183. American Geophysical Union, Washington, DC, pp 249–260. doi: 10.1029/2005GM000323
  150. Zhou Q, Birkholzer JT, Tsang C-F, Rutqvist J (2008) A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations. Int J Greenh Gas Control 2(4):626–639. doi: 10.1016/j.ijggc.2008.02.004 CrossRefGoogle Scholar
  151. Zoback MD, Gorelick SM (2012) Earthquake triggering and large-scale geologic storage of carbon dioxide. Proc Natl Acad Sci USA 109(26):10164–10168. doi: 10.1073/pnas.1202473109 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Carbon Management and Sequestration Center, School of Environment and Natural ResourcesThe Ohio State UniversityColumbusUSA

Personalised recommendations