Advertisement

Global Forests Management for Climate Change Mitigation

  • David A.N. UssiriEmail author
  • Rattan Lal
Chapter

Abstract

Forests are the dominant terrestrial ecosystem occupying approximately 30% of the Earth total land area. They play an important role in the global carbon (C) cycle, and the mitigation of CO2 emission due to its large storage of soil organic C (SOC), a large part of which is stored in soils. Due to their dominance, forests management has gained much interest in science and policy discussions as one of the important options to mitigate climate change. Global forests are increasingly affected by land use change , fragmentation, changing management objectives and degradation. The area under global forests has declined by 3% from 1990 to 2015, but the area of planted forest has increased in all regions of the world and now accounts for nearly 7% of global forest land estimated at 3999 million hectares (Mha). The area of primary forests which is typically defined as lacking direct human influence, is about 34% of the total forest land, based on country reports, but this area is declining, especially in South America and Africa because of human-caused fragmentation and degradation. About 5% of global forests are plantations generally used for commercial purposes. Globally, timber production has remained stable since 1990, but forest used for non-wood forest products indicates that harvesting is taking place on a smaller proportion of total forest area. Based on trends in the area of managed forest and regional studies, historical and current forest management has been a significant determinant of current carbon stocks in forest. The established forest currently offset 30% of global emissions of CO2 from fossil fuel combustion, and there are mitigation opportunities involving forests that could increase the gross terrestrial C uptake from about 4.0 to 6.2 Pg C annually. Diversifying use of forest land may have significant consequences for maintaining or increasing the current rate of terrestrial C sequestration. Indirect human influences such as increasing atmospheric CO2 and climate change, along with the direct effects of land management and projected increasing demand for wood biofuel, are likely to become increasingly important elements that influence land management strategies and the role of forests in the global C cycle and future climate mitigation.

Keywords

Forest resources Deforestation Afforestation Land use change Sustainable forest management Primary forest Gross primary productivity Net primary productivity 

References

  1. Adams JM, Faure H, Faure-Denard L, McGlade JM, Woodward FI (1990) Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature 348(6303):711–714CrossRefGoogle Scholar
  2. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259(4):660–684. doi: 10.1016/j.foreco.2009.09.001 CrossRefGoogle Scholar
  3. Amundson R (2001) The carbon budget in soils. Annu Rev Earth Planet Sci 29(1):535–562. doi: 10.1146/annurev.earth.29.1.535 CrossRefGoogle Scholar
  4. Asner GP, Mascaro J, Muller-Landau HC, Vieilledent G, Vaudry R, Rasamoelina M, Hall JS, van Breugel M (2012) A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 168(4):1147–1160. doi: 10.1007/s00442-011-2165-z CrossRefGoogle Scholar
  5. Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Roedenbeck C, Arain MA, Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson KW, Roupsard O, Veenendaal E, Viovy N, Williams C, Woodward FI, Papale D (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329(5993):834–838. doi: 10.1126/science.1184984 CrossRefGoogle Scholar
  6. Bellassen V, Luyssaert S (2014) Managing forests in uncertain times. Nature 506(7487):153–155CrossRefGoogle Scholar
  7. Birdsey RA, Heath LS (2001) Forest inventory data, models, and assumptions for monitoring carbon flux. In: Lal R, Follett RF (eds) Soil carbon sequestration and greenhouse effect. Soil Science Society of America Inc., WI, USA, pp 125–135Google Scholar
  8. Birdsey R, Pregitzer K, Lucier A (2006) Forest carbon management in the United States: 1600–2100. J Environ Qual 35(4):1461–1469. doi: 10.2134/jeq2005.0162 CrossRefGoogle Scholar
  9. Birdsey R, Angeles-Perez G, Kurz WA, Lister A, Olguin M, Pan Y, Wayson C, Wilson B, Johnson K (2013) Approaches to monitoring changes in carbon stocks for REDD. Carbon Manag 4(5):519–537. doi: 10.4155/cmt.13.49 CrossRefGoogle Scholar
  10. Boisvenue C, Running SW (2006) Impacts of climate change on natural forest productivity—evidence since the middle of the 20th century. Glob Change Biol 12(5):862–882. doi: 10.1111/j.1365-2486.2006.01134.x CrossRefGoogle Scholar
  11. Bond-Lamberty B, Wang C, Gower ST (2002) Annual carbon flux from woody debris for a boreal black spruce fire chronosequence. J Geophys Res Atmos 108(D3). doi: 10.1029/2001jd000839
  12. Bradford JB, Birdsey RA, Joyce LA, Ryan MG (2008) Tree age, disturbance history, and carbon stocks and fluxes in subalpine Rocky Mountain forests. Glob Change Biol 14(12):2882–2897. doi: 10.1111/j.1365-2486.2008.01686.x CrossRefGoogle Scholar
  13. Brandt M, Mbow C, Diouf AA, Verger A, Samimi C, Fensholt R (2015) Ground- and satellite-based evidence of the biophysical mechanisms behind the greening Sahel. Glob Change Biol 21(4):1610–1620. doi: 10.1111/gcb.12807 CrossRefGoogle Scholar
  14. Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer, vol 134. Food & Agriculture OrgGoogle Scholar
  15. Bustamante M, Robledo-Abad C, Harper R, Mbow C, Ravindranat NH, Sperling F, Haberl H, Pinto AdS, Smith P (2014) Co-benefits, trade-offs, barriers and policies for greenhouse gas mitigation in the agriculture, forestry and other land use (AFOLU) sector. Glob Change Biol 20(10):3270–3290. doi: 10.1111/gcb.12591 CrossRefGoogle Scholar
  16. Canadell J, Pataki D, Gifford R, Houghton R, Luo Y, Raupach M, Smith P, Steffen W (2007a) Saturation of the terrestrial carbon sink. In: Canadell J, Pataki D, Pitelka L (eds) Terrestrial ecosystems in a changing world. Global change—the IGBP series. Springer, Berlin, pp 59–78. doi: 10.1007/978-3-540-32730-1_6
  17. Canadell JG, Le Quéré C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007b) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA 104(47):18866–18870. doi: 10.1073/pnas.0702737104 CrossRefGoogle Scholar
  18. Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Folster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riera B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145(1):87–99. doi: 10.1007/s00442-005-0100-x CrossRefGoogle Scholar
  19. Chave J, Olivier J, Bongers F, Chatelet P, Forget P-M, van der Meer P, Norden N, Riera B, Charles-Dominique P (2008) Above-ground biomass and productivity in a rain forest of eastern South America. J Trop Ecol 24:355–366. doi: 10.1017/s0266467408005075 CrossRefGoogle Scholar
  20. Chen JM, Ju WM, Cihlar J, Price D, Liu J, Chen WJ, Pan JJ, Black A, Barr A (2003) Spatial distribution of carbon sources and sinks in Canada’s forests. Tellus B 55(2):622–641. doi: 10.1034/j.1600-0889.2003.00036.x CrossRefGoogle Scholar
  21. Chen W, Moriya K, Sakai T, Koyama L, Cao CX (2016) Mapping a burned forest area from landsat TM data by multiple methods. Geomatics Nat Hazards Risk 7(1):384–402. doi: 10.1080/19475705.2014.925982 CrossRefGoogle Scholar
  22. Ciais P, Sabine CL, Govindasamy B, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myeneni R, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K et al (eds) Climate change 2013: physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, USA, pp 465–570Google Scholar
  23. Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, McCabe AM (2009) The last glacial maximum. Science 325(5941):710–714. doi: 10.1126/science.1172873 CrossRefGoogle Scholar
  24. Cohen WB, Goward SN (2004) Landsat’s role in ecological applications of remote sensing. Bioscience 54(6):535–545. doi: 10.1641/0006-3568(2004)054[0535:lrieao]2.0.co;2 CrossRefGoogle Scholar
  25. Cohen WB, Harmon ME, Wallin DO, Fiorella M (1996) Two decades of carbon flux from forests of the Pacific northwest. Bioscience 46(11):836–844. doi: 10.2307/1312969 CrossRefGoogle Scholar
  26. Corona P, Marchetti M (2007) Outlining multi-purpose forest inventories to assess the ecosystem approach in forestry. Plant Biosyst 141(2):243–251. doi: 10.1080/11263500701401836 CrossRefGoogle Scholar
  27. D’Annunzio R, Lindquist E, MacDicken KG (2014) Global forest land—use change from 1990 to 2010: an update to a global remote sensing survey of forests. Food and Agricultural Organization (FAO), Rome, Italy, p 6Google Scholar
  28. Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ, Irland LC, Lugo AE, Peterson CJ, Simberloff D, Swanson FJ, Stocks BJ, Wotton BM (2001) Climate change and forest disturbances. Bioscience 51(9):723–734. doi: 10.1641/0006-3568(2001)051[0723:ccafd]2.0.co;2 CrossRefGoogle Scholar
  29. Dean C, Roxburgh S, Mackey BG (2004) Forecasting landscape-level carbon sequestration using gridded, spatially adjusted tree growth. For Ecol Manag 194(1–3):109–129. doi: 10.1016/j.foreco.2004.02.013 CrossRefGoogle Scholar
  30. DeFries R, Rosenzweig C (2010) Toward a whole-landscape approach for sustainable land use in the tropics. Proc Natl Acad Sci USA 107(46):19627–19632. doi: 10.1073/pnas.1011163107 CrossRefGoogle Scholar
  31. DeLucia EH, Drake JE, Thomas RB, Gonzalez-Meler M (2007) Forest carbon use efficiency: is respiration a constant fraction of gross primary production? Glob Change Biol 13(6):1157–1167. doi: 10.1111/j.1365-2486.2007.01365.x CrossRefGoogle Scholar
  32. Delzon S, Loustau D (2005) Age-related decline in stand water use: sap flow and transpiration in a pine forest chronosequence. Agric For Meteorol 129(3–4):105–119. doi: 10.1016/j.agrformet.2005.01.002 CrossRefGoogle Scholar
  33. Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263(5144):185–190. doi: 10.1126/science.263.5144.185 CrossRefGoogle Scholar
  34. Echeverria ME, Markewitz D, Morris LA, Hendrick RL (2004) Soil organic matter fractions under managed pine plantations of the southeastern USA. Soil Sci Soc Am J 68(3):950–958CrossRefGoogle Scholar
  35. EPA (2015) Inventor of US greenhouse gas: emissions and sinks 1990–2013. US Environmental Protection Agency, EPA 430-R-15-004, Washington, DC, USAGoogle Scholar
  36. Erb K-H, Gaube V, Krausmann F, Plutzar C, Bondeau A, Haberl H (2007) A comprehensive global 5 min resolution land-use data set for the year 2000 consistent with national census data. J Land Use Sci 2(3):191–224. doi: 10.1080/17474230701622981 CrossRefGoogle Scholar
  37. Erb K-H, Kastner T, Luyssaert S, Houghton RA, Kuemmerle T, Olofsson P, Haberl H (2013) Commentary: bias in the attribution of forest carbon sinks. Nat Clim Change 3(10):854–856CrossRefGoogle Scholar
  38. FAO (2010) Global forest resource assessment 2010. Food and Agriculture Organization of the United Nations, Rome, ItalyGoogle Scholar
  39. FAO (2013) Forests and water—international momentum an action. Food and Agriculture Organization of the United Nations, Rome, Italy, 76 ppGoogle Scholar
  40. FAO (2014) State of the world’s forests: enhancing the socioeconomic benefits from forests. Food and Agriculture Organization of the United Nations, Rome, Italy, p 133Google Scholar
  41. FAO (2015) Global forest resources assessment 2015. Food and Agriculture Organization of the United Nations, pp 245.  Available online at http://www.fao.org/forest-resources-assessment/en/
  42. FAOSTAT (2016) Food and agriculture organization global statistics web page. Food and Agriculture Organization of the United Nations, Statistical Division. http://faostat3.fao.org/. Accessed Aug 2016
  43. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281(5374):237–240. doi: 10.1126/science.281.5374.237 CrossRefGoogle Scholar
  44. Friedlingstein P, Cox P, Betts R, Bopp L, Von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis: results from the (CMIP)-M-4 model intercomparison. J Climate 19(14):3337–3353. doi: 10.1175/jcli3800.1 CrossRefGoogle Scholar
  45. Friedlingstein P, Houghton RA, Marland G, Hackler J, Boden TA, Conway TJ, Canadell JG, Raupach MR, Ciais P, Le Quéré C (2010) Update on CO2 emissions. Nat Geosci 3(12):811–812. doi: 10.1038/ngeo1022 CrossRefGoogle Scholar
  46. Gibbs HK, Brown S, Niles JO, Foley JA (2007) Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett 2(4). doi: 10.1088/1748-9326/2/4/045023
  47. Gough CM, Vogel CS, Schmid HP, Su HB, Curtis PS (2008) Multi-year convergence of biometric and meteorological estimates of forest carbon storage. Agric For Meteorol 148(2):158–170. doi: 10.1016/j.agrformet.2007.08.004 CrossRefGoogle Scholar
  48. Goulden ML, McMillan AMS, Winston GC, Rocha AV, Manies KL, Harden JW, Bond-Lamberty BP (2011) Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Glob Change Biol 17(2):855–871. doi: 10.1111/j.1365-2486.2010.02274.x CrossRefGoogle Scholar
  49. Gower ST, McMurtrie RE, Murty D (1996) Aboveground net primary production decline with stand age: potential causes. Trends Ecol Evol 11(9):378–382. doi: 10.1016/0169-5347(96)10042-2 CrossRefGoogle Scholar
  50. Grainger A (2008) Difficulties in tracking the long-term global trend in tropical forest area. Proc Natl Acad Sci USA 105(2):818–823. doi: 10.1073/pnas.0703015105 CrossRefGoogle Scholar
  51. Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Change Biol 8(4):345–360. doi: 10.1046/j.1354-1013.2002.00486.x CrossRefGoogle Scholar
  52. Guo ZD, Hu HF, Pan YD, Birdsey RA, Fang JY (2014) Increasing biomass carbon stocks in trees outside forests in China over the last three decades. BioGeosciences 11(15):4115–4122. doi: 10.5194/bg-11-4115-2014 CrossRefGoogle Scholar
  53. Gustafson EJ, Shvidenko AZ, Sturtevant BR, Scheller RM (2010) Predicting global change effects on forest biomass and composition in south-central Siberia. Ecol Appl 20(3):700–715. doi: 10.1890/08-1693.1 CrossRefGoogle Scholar
  54. Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Plutzar C, Gingrich S, Lucht W, Fischer-Kowalski M (2007) Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc Natl Acad Sci USA 104(31):12942–12945. doi: 10.1073/pnas.0704243104 CrossRefGoogle Scholar
  55. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342(6160):850–853. doi: 10.1126/science.1244693 CrossRefGoogle Scholar
  56. Hardiman BS, Gough CM, Halperin A, Hofmeister KL, Nave LE, Bohrer G, Curtis PS (2013) Maintaining high rates of carbon storage in old forests: a mechanism linking canopy structure to forest function. For Ecol Manag 298:111–119. doi: 10.1016/j.foreco.2013.02.031 CrossRefGoogle Scholar
  57. Heath LS, Smith JE (2000) Soil carbon accounting and assumptions for forestry and forest-related land use change. In: Joyce LA, Birdsey R (eds) Impact of climate change on America’s forests: a technical document supporting the 2000 Usda forest service RPA assessment, vol 59. US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, Colorado, USA, pp 89–101Google Scholar
  58. Heath LS, Smith JE, Skog KE, Nowak DJ, Woodall CW (2011) Managed forest carbon estimates for the US greenhouse gas inventory, 1990–2008. J For 109(3):167–173Google Scholar
  59. Hicke JA, Jenkins JC, Ojima DS, Ducey M (2007) Spatial patterns of forest characteristics in the western United States derived from inventories. Ecol Appl 17(8):2387–2402. doi: 10.1890/06-1951.1 CrossRefGoogle Scholar
  60. Hicke JA, Allen CD, Desai AR, Dietze MC, Hall RJ, Hogg EH, Kashian DM, Moore D, Raffa KF, Sturrock RN, Vogelmann J (2012) Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Glob Change Biol 18(1):7–34. doi: 10.1111/j.1365-2486.2011.02543.x CrossRefGoogle Scholar
  61. Higgins JA, Kurbatov AV, Spaulding NE, Brook E, Introne DS, Chimiak LM, Yan Y, Mayewski PA, Bender ML (2015) Atmospheric composition 1 million years ago from blue ice in the Allan Hills, Antarctica. Proc Natl Acad Sci USA 112(22):6887–6891. doi: 10.1073/pnas.1420232112 CrossRefGoogle Scholar
  62. Hirsch T (2010) Global biodiversity outlook 3. Secretariat of the Convention on Biological Diversity of the United Nations, Montreal, Quebec, Canada, p 93Google Scholar
  63. Hoshino D, Nishimura N, Yamamoto S (2001) Age, size structure and spatial pattern of major tree species in an old-growth Chamaecyparis obtusa forest, Central Japan. For Ecol Manag 152(1–3):31–43. doi: 10.1016/s0378-1127(00)00614-9 CrossRefGoogle Scholar
  64. Houghton RA (2003) Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus B 55(2):378–390. doi: 10.1034/j.1600-0889.2003.01450.x CrossRefGoogle Scholar
  65. Houghton RA (2005) Aboveground forest biomass and the global carbon balance. Glob Change Biol 11(6):945–958. doi: 10.1111/j.1365-2486.2005.00955.x CrossRefGoogle Scholar
  66. Houghton RA (2007) Balancing the global carbon budget. Annu Rev Earth Planet Sci 35:313–347. doi: 10.1146/annurev.earth.35.031306.140057 CrossRefGoogle Scholar
  67. Houghton RA (2012) Carbon emissions and the drivers of deforestation and forest degradation in the tropics. Curr Opin Environ Sust 4(6):597–603. doi: 10.1016/j.cosust.2012.06.006 CrossRefGoogle Scholar
  68. Houghton RA, House JI, Pongratz J, van der Werf GR, DeFries RS, Hansen MC, Le Quéré C, Ramankutty N (2012) Carbon emissions from land use and land-cover change. BioGeosciences 9(12):5125–5142. doi: 10.5194/bg-9-5125-2012 CrossRefGoogle Scholar
  69. Huntzinger DN, Post WM, Wei Y, Michalak AM, West TO, Jacobson AR, Baker IT, Chen JM, Davis KJ, Hayes DJ, Hoffman FM, Jain AK, Liu S, McGuire AD, Neilson RP, Potter C, Poulter B, Price D, Raczka BM, Tian HQ, Thornton P, Tomelleri E, Viovy N, Xiao J, Yuan W, Zeng N, Zhao M, Cook R (2012) North American carbon program (NACP) regional interim synthesis: terrestrial biospheric model intercomparison. Ecol Model 232:144–157. doi: 10.1016/j.ecolmodel.2012.02.004 CrossRefGoogle Scholar
  70. IPCC (2006) 2006 national greenhouse gas inventory guidelines. In: Eggleston S, Buendia L, Miwa K, Ngara T, Tanabe K (eds) 2006 IPCC guidelines for national greenhouse gas inventories. Institute of Global Environmental Strategies (IGES), Kanagaw, Japan, 20 ppGoogle Scholar
  71. IPCC (2014) Climate change 2014: synthesis report. In: Pachauri RK, Meyer L, Team CW (eds) Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. Intergovernmental Panel on Climate Change, Geneva, Switzerland, 151 ppGoogle Scholar
  72. Jackson RB, Jobbagy EG, Avissar R, Roy SB, Barrett DJ, Cook CW, Farley KA, le Maitre DC, McCarl BA, Murray BC (2005) Trading water for carbon with biological sequestration. Science 310(5756):1944–1947. doi: 10.1126/science.1119282 CrossRefGoogle Scholar
  73. Kashian DM, Romme WH, Tinker DB, Turner MG, Ryan MG (2006) Carbon storage on landscapes with stand-replacing fires. Bioscience 56(7):598–606. doi: 10.1641/0006-3568(2006)56[598:csolws]2.0.co;2 CrossRefGoogle Scholar
  74. Kato E, Kinoshita T, Ito A, Kawamiya M, Yamagata Y (2013) Evaluation of spatially explicit emission scenario of land-use change and biomass burning using a process-based biogeochemical model. J Land Use Sci 8(1):104–122. doi: 10.1080/1747423X.2011.628705 CrossRefGoogle Scholar
  75. Keeling CD (1960) The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus 12(2):200–203CrossRefGoogle Scholar
  76. Keenan RJ, Reams GA, Achard F, de Freitas JV, Grainger A, Lindquist E (2015) Dynamics of global forest area: results from the FAO global forest resources assessment 2015. For Ecol Manag 352:9–20. doi: 10.1016/j.foreco.2015.06.014 CrossRefGoogle Scholar
  77. Khatiwala S, Primeau F, Hall T (2009) Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature 462(7271):346–349. doi: 10.1038/nature08526 CrossRefGoogle Scholar
  78. Kindermann GE, McAllum I, Fritz S, Obersteiner M (2008) A global forest growing stock, biomass and carbon map based on FAO statistics. Silva Fenn 42(3):387–396. doi: 10.14214/sf.244 CrossRefGoogle Scholar
  79. Kohl M, Lasco R, Cifuentes M, Jonsson O, Korhonen KT, Mundhenk P, de Jesus Navar J, Stinson G (2015) Changes in forest production, biomass and carbon: results from the 2015 UN FAO global forest resource assessment. For Ecol Manag 352:21–34. doi: 10.1016/j.foreco.2015.05.036 CrossRefGoogle Scholar
  80. Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452(7190):987–990. doi: 10.1038/nature06777 CrossRefGoogle Scholar
  81. Kurz WA, Dymond CC, White TM, Stinson G, Shaw CH, Rampley GJ, Smyth C, Simpson BN, Neilson ET, Tyofymow JA, Metsaranta J, Apps MJ (2009) CBM-CFS3: a model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecol Model 220(4):480–504. doi: 10.1016/j.ecolmodel.2008.10.018 CrossRefGoogle Scholar
  82. Le Quéré C, Raupach MR, Canadell JG, Marland G, Bopp L, Ciais P, Conway TJ, Doney SC, Feely RA, Foster P, Friedlingstein P, Gurney K, Houghton RA, House JI, Huntingford C, Levy PE, Lomas MR, Majkut J, Metzl N, Ometto JP, Peters GP, Prentice IC, Randerson JT, Running SW, Sarmiento JL, Schuster U, Sitch S, Takahashi T, Viovy N, van der Werf GR, Woodward FI (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2(12):831–836. doi: 10.1038/ngeo689 CrossRefGoogle Scholar
  83. Le Quéré C, Moriarty R, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Friedlingstein P, Peters GP, Andres RJ, Boden TA, Houghton RA, House JI, Keeling RF, Tans P, Arneth A, Bakker DCE, Barbero L, Bopp L, Chang J, Chevallier F, Chini LP, Ciais P, Fader M, Feely RA, Gkritzalis T, Harris I, Hauck J, Ilyina T, Jain AK, Kato E, Kitidis V, Goldewijk KK, Koven C, Landschuetzer P, Lauvset SK, Lefevre N, Lenton A, Lima ID, Metzl N, Millero F, Munro DR, Murata A, Nabel JEMS, Nakaoka S, Nojiri Y, O’Brien K, Olsen A, Ono T, Perez FF, Pfeil B, Pierrot D, Poulter B, Rehder G, Roedenbeck C, Saito S, Schuster U, Schwinger J, Seferian R, Steinhoff T, Stocker BD, Sutton AJ, Takahashi T, Tilbrook B, van der Laan-Luijkx IT, van der Werf GR, van Heuven S, Vandemark D, Viovy N, Wiltshire A, Zaehle S, Zeng N (2015) Global carbon budget 2015. Earth Syst Data 7(2):349–396. doi: 10.5194/essd-7-349-2015 CrossRefGoogle Scholar
  84. Le Quéré C, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Peters GP, Manning AC, Boden TA, Tans PP, Houghton RA, Keeling RF, Alin S, Andrews OD, Anthoni P, Barbero L, Bopp L, Chevallier F, Chini LP, Ciais P, Currie K, Delire C, Doney SC, Friedlingstein P, Gkritzalis T, Harris I, Hauck J, Haverd V, Hoppema M, Klein Goldewijk K, Jain AK, Kato E, Körtzinger A, Landschützer P, Lefèvre N, Lenton A, Lienert S, Lombardozzi D, Melton JR, Metzl N, Millero F, Monteiro PMS, Munro DR, Nabel JEMS, Nakaoka SI, O’Brien K, Olsen A, Omar AM, Ono T, Pierrot D, Poulter B, Rödenbeck C, Salisbury J, Schuster U, Schwinger J, Séférian R, Skjelvan I, Stocker BD, Sutton AJ, Takahashi T, Tian H, Tilbrook B, van der Laan-Luijkx IT, van der Werf GR, Viovy N, Walker AP, Wiltshire AJ, Zaehle S (2016) Global carbon budget 2016. Earth Syst Data 8(2):605–649. doi: 10.5194/essd-8-605-2016 CrossRefGoogle Scholar
  85. Lefsky MA (2010) A global forest canopy height map from the moderate resolution imaging spectroradiometer and the geoscience laser altimeter system. Geophys Res Lett 37. doi: 10.1029/2010gl043622
  86. Lewis SL, Lloyd J, Sitch S, Mitchard ETA, Laurance WF (2009a) Changing ecology of tropical forests: evidence and drivers. Annu Rev Ecol Evol Syst 40:529–549. doi: 10.1146/annurev.ecolsys.39.110707.173345 CrossRefGoogle Scholar
  87. Lewis SL, Lopez-Gonzalez G, Sonke B, Affum-Baffoe K, Baker TR, Ojo LO, Phillips OL, Reitsma JM, White L, Comiskey JA, Djuikouo KM-N, Ewango CEN, Feldpausch TR, Hamilton AC, Gloor M, Hart T, Hladik A, Lloyd J, Lovett JC, Makana J-R, Malhi Y, Mbago FM, Ndangalasi HJ, Peacock J, Peh KSH, Sheil D, Sunderland T, Swaine MD, Taplin J, Taylor D, Thomas SC, Votere R, Woell H (2009b) Increasing carbon storage in intact African tropical forests. Nature 457(7232):1003–1006. doi: 10.1038/nature07771 CrossRefGoogle Scholar
  88. Li Q, Chen J, Moorhead DL (2012) Respiratory carbon losses in a managed oak forest ecosystem. For Ecol Manag 279:1–10. doi: 10.1016/j.foreco.2012.05.011 CrossRefGoogle Scholar
  89. Litvak M, Miller S, Wofsy SC, Goulden M (2003) Effect of stand age on whole ecosystem CO2 exchange in the Canadian boreal forest. J Geophys Res Atmos 108(D3). doi: 10.1029/2001jd000854
  90. Luedeling E, Neufeldt H (2012) Carbon sequestration potential of parkland agroforestry in the Sahel. Clim Change 115(3–4):443–461. doi: 10.1007/s10584-012-0438-0 CrossRefGoogle Scholar
  91. Luethi D, Le Floch M, Bereiter B, Blunier T, Barnola J-M, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453(7193):379–382. doi: 10.1038/nature06949 CrossRefGoogle Scholar
  92. Lundgren BO, Rainee JB (1982) Sustained agroforestry. In: Nestel B (ed) Agricultural research for development: potentials and challenges in Asia. ISNER, Tha Hahue, Netherlands, pp 37–49Google Scholar
  93. Luyssaert S, Inglima I, Jung M, Richardson AD, Reichstein M, Papale D, Piao SL, Schulzes ED, Wingate L, Matteucci G, Aragao L, Aubinet M, Beers C, Bernhofer C, Black KG, Bonal D, Bonnefond JM, Chambers J, Ciais P, Cook B, Davis KJ, Dolman AJ, Gielen B, Goulden M, Grace J, Granier A, Grelle A, Griffis T, Gruenwald T, Guidolotti G, Hanson PJ, Harding R, Hollinger DY, Hutyra LR, Kolar P, Kruijt B, Kutsch W, Lagergren F, Laurila T, Law BE, Le Maire G, Lindroth A, Loustau D, Malhi Y, Mateus J, Migliavacca M, Misson L, Montagnani L, Moncrieff J, Moors E, Munger JW, Nikinmaa E, Ollinger SV, Pita G, Rebmann C, Roupsard O, Saigusa N, Sanz MJ, Seufert G, Sierra C, Smith ML, Tang J, Valentini R, Vesala T, Janssens IA (2007) CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob Change Biol 13(12):2509–2537. doi: 10.1111/j.1365-2486.2007.01439.x CrossRefGoogle Scholar
  94. Luyssaert S, Schulze ED, Boerner A, Knohl A, Hessenmoeller D, Law BE, Ciais P, Grace J (2008) Old-growth forests as global carbon sinks. Nature 455(7210):213–215. doi: 10.1038/nature07276 CrossRefGoogle Scholar
  95. Luyssaert S, Ciais P, Piao SL, Schulze ED, Jung M, Zaehle S, Schelhaas MJ, Reichstein M, Churkina G, Papale D, Abril G, Beer C, Grace J, Loustau D, Matteucci G, Magnani F, Nabuurs GJ, Verbeeck H, Sulkava M, van der Werf GR, Janssens IA, Team C-IS (2010) The European carbon balance. Part 3: forests. Glob Change Biol 16(5):1429–1450. doi: 10.1111/j.1365-2486.2009.02056.x
  96. Luyssaert S, Jammet M, Stoy PC, Estel S, Pongratz J, Ceschia E, Churkina G, Don A, Erb K, Ferlicoq M, Gielen B, Gruenwald T, Houghton RA, Klumpp K, Knohl A, Kolb T, Kuemmerle T, Laurila T, Lohila A, Loustau D, McGrath MJ, Meyfroidt P, Moors EJ, Naudts K, Novick K, Otto J, Pilegaard K, Pio CA, Rambal S, Rebmann C, Ryder J, Suyker AE, Varlagin A, Wattenbach M, Dolman AJ (2014) Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat Clim Change 4(5):389–393. doi: 10.1038/nclimate2196 CrossRefGoogle Scholar
  97. Malhi Y, Baldocchi DD, Jarvis PG (1999) The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ 22(6):715–740. doi: 10.1046/j.1365-3040.1999.00453.x CrossRefGoogle Scholar
  98. Masek JG, Hayes DJ, Hughes MJ, Healey SP, Turner DP (2015) The role of remote sensing in process-scaling studies of managed forest ecosystems. For Ecol Manag 355:109–123. doi: 10.1016/j.foreco.2015.05.032 CrossRefGoogle Scholar
  99. Masera OR, Garza-Caligaris JF, Kanninen M, Karjalainen T, Liski J, Nabuurs GJ, Pussinen A, de Jong BHJ, Mohren GMJ (2003) Modeling carbon sequestration in afforestation, agroforestry and forest management projects: the CO2FIX V.2 approach. Ecol Model 164(2–3):177–199. doi: 10.1016/s0304-3800(02)00419-2
  100. McKinley DC, Ryan MG, Birdsey RA, Giardina CP, Harmon ME, Heath LS, Houghton RA, Jackson RB, Morrison JF, Murray BC, Pataki DE, Skog KE (2011) A synthesis of current knowledge on forests and carbon storage in the United States. Ecol Appl 21(6):1902–1924. doi: 10.1890/10-0697.1 CrossRefGoogle Scholar
  101. McMillan AMS, Goulden ML (2008) Age-dependent variation in the biophysical properties of boreal forests. Glob Biogeochem Cycles 22(2). doi: 10.1029/2007gb003038
  102. Miura S, Amacher M, Hofer T, San-Miguel-Ayanz J, Ernawati-Thackway R (2015) Protective functions and ecosystem services of global forests in the past quarter-century. For Ecol Manag 352:35–46. doi: 10.1016/j.foreco.2015.03.039
  103. Morales-Hidalgo D, Oswalt SN, Somanathan E (2015) Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the global forest resources assessment 2015. For Ecol Manag 352:68–77. doi: 10.1016/j.foreco.2015.06.011 CrossRefGoogle Scholar
  104. Nabuurs GJ, Masera O, Andrasko K, Benitez-Ponce P, Boer R, Dutschke M, Elsiddig E, Ford-Robertson J, Frumhoff P, Karjalainen T, Krankina O, Kurz WA, Matsumoto M, Oyhantcabal W, Ravindranath NH, Sanchez MJS, Zhang X (2007) Forestry. In: Metz B, Davidson OR, Bosch PR, Dave R, Meye LA (eds) Climate change 2007: mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, and New York, USA, pp 541–584Google Scholar
  105. Ni X, Zhou Y, Cao C, Wang X, Shi Y, Park T, Choi S, Myneni RB (2015) Mapping forest canopy height over continental china using multi-source remote sensing data. Remote Sens 7(7):8436–8452. doi: 10.3390/rs70708436 CrossRefGoogle Scholar
  106. Page SE, Siegert F, Rieley JO, Boehm HDV, Jaya A, Limin S (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420(6911):61–65. doi: 10.1038/nature01131 CrossRefGoogle Scholar
  107. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333(6045):988–993. doi: 10.1126/science.1201609 CrossRefGoogle Scholar
  108. Pan Y, Birdsey RA, Phillips OL, Jackson RB (2013) The structure, distribution, and biomass of the world’s forests. Annu Rev Ecol Evol Syst 44:593–622. doi: 10.1146/annurev-ecolsys-110512-135914 CrossRefGoogle Scholar
  109. Pearson TR, Brown SL, Birdsey RA (2007) Measurement guidelines for the sequestration of forest carbon. United States Department of Agriculture (USDA) Forest Service, Northern Research Station, PA, USA, p 47Google Scholar
  110. Peltoniemi M, Makipaa R, Liski J, Tamminen P (2004) Changes in soil carbon with stand age—an evaluation of a modelling method with empirical data. Glob Change Biol 10(12):2078–2091. doi: 10.1111/j.1365-2486.2004.00881.x CrossRefGoogle Scholar
  111. Petrescu AMR, Abad-Vinas R, Janssens-Maenhout G, Blujdea VNB, Grassi G (2012) Global estimates of carbon stock changes in living forest biomass: EDGARv4.3-time series from 1990 to 2010. BioGeosciences 9(8):3437–3447. doi: 10.5194/bg-9-3437-2012
  112. Philips O, Lewis SL (2014) Recent changes in tropical forest biomass and dynamics. In: Coomes DA, Burslem DFR, Simonson WD (eds) Forests and global change. Cambridge University Press, Cambridge and New York, pp 77–108CrossRefGoogle Scholar
  113. Phillips OL, Malhi Y, Higuchi N, Laurance WF, Nunez PV, Vasquez RM, Laurance SG, Ferreira LV, Stern M, Brown S, Grace J (1998) Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282(5388):439–442. doi: 10.1126/science.282.5388.439 CrossRefGoogle Scholar
  114. Phillips DL, Brown SL, Schroeder PE, Birdsey RA (2000) Toward error analysis of large-scale forest carbon budgets. Glob Ecol Biogeogr 9(4):305–313. doi: 10.1046/j.1365-2699.2000.00197.x CrossRefGoogle Scholar
  115. Phillips OL, Aragao LEOC, Lewis SL, Fisher JB, Lloyd J, Lopez-Gonzalez G, Malhi Y, Monteagudo A, Peacock J, Quesada CA, van der Heijden G, Almeida S, Amaral I, Arroyo L, Aymard G, Baker TR, Banki O, Blanc L, Bonal D, Brando P, Chave J, Alves de Oliveira AC, Cardozo ND, Czimczik CI, Feldpausch TR, Freitas MA, Gloor E, Higuchi N, Jimenez E, Lloyd G, Meir P, Mendoza C, Morel A, Neill DA, Nepstad D, Patino S, Cristina Penuela M, Prieto A, Ramirez F, Schwarz M, Silva J, Silveira M, Thomas AS, ter Steege H, Stropp J, Vasquez R, Zelazowski P, Alvarez Davila E, Andelman S, Andrade A, Chao K-J, Erwin T, Di Fiore A, Honorio CE, Keeling H, Killeen TJ, Laurance WF, Pena Cruz A, Pitman NCA, Nunez Vargas P, Ramirez-Angulo H, Rudas A, Salamao R, Silva N, Terborgh J, Torres-Lezama A (2009) Drought sensitivity of the Amazon rainforest. Science 323(5919):1344–1347. doi: 10.1126/science.1164033 CrossRefGoogle Scholar
  116. Piao S, Yin G, Tan J, Cheng L, Huang M, Li Y, Liu R, Mao J, Myneni RB, Peng S, Poulter B, Shi X, Xiao Z, Zeng N, Zeng Z, Wang Y (2015) Detection and attribution of vegetation greening trend in China over the last 30 years. Glob Change Biol 21(4):1601–1609. doi: 10.1111/gcb.12795 CrossRefGoogle Scholar
  117. Poeplau C, Don A, Vesterdal L, Leifeld J, Van Wesemael B, Schumacher J, Gensior A (2011) Temporal dynamics of soil organic carbon after land-use change in the temperate zone—carbon response functions as a model approach. Glob Change Biol 17(7):2415–2427. doi: 10.1111/j.1365-2486.2011.02408.x CrossRefGoogle Scholar
  118. Potapov PV, Zhuravleva IV, Manisha AE, Turubanova SA, Yaroshenko AY (2008) Identification and monitoring of world intact landscapes using remote sensing methods. Lesovedenie 2:58–67Google Scholar
  119. Pregitzer KS, Euskirchen ES (2004) Carbon cycling and storage in world forests: biome patterns related to forest age. Glob Change Biol 10(12):2052–2077. doi: 10.1111/j.1365-2486.2004.00866.x CrossRefGoogle Scholar
  120. Prentice IC, Harrison SP, Bartlein PJ (2011) Global vegetation and terrestrial carbon cycle changes after the last ice age. New Phytol 189(4):988–998. doi: 10.1111/j.1469-8137.2010.03620.x CrossRefGoogle Scholar
  121. Ramankutty N, Gibbs HK, Achard F, Defriess R, Foley JA, Houghton RA (2007) Challenges to estimating carbon emissions from tropical deforestation. Glob Change Biol 13(1):51–66. doi: 10.1111/j.1365-2486.2006.01272.x CrossRefGoogle Scholar
  122. Reyer C, Guericke M, Ibisch PL (2009) Climate change mitigation via afforestation, reforestation and deforestation avoidance: and what about adaptation to environmental change? New Forest 38(1):15–34. doi: 10.1007/s11056-008-9129-0 CrossRefGoogle Scholar
  123. Rossi E, Rogan J, Schneider L (2013) Mapping forest damage in northern Nicaragua after Hurricane Felix (2007) using MODIS enhanced vegetation index data. GISSci Remote Sens 50(4):385–399. doi: 10.1080/15481603.2013.820066 Google Scholar
  124. Running SW, Coughlan JC (1988) A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes. Ecol Model 42(2):125–154. doi: 10.1016/0304-3800(88)90112-3 CrossRefGoogle Scholar
  125. Running SW, Nemani RR, Heinsch FA, Zhao MS, Reeves M, Hashimoto H (2004) A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54(6):547–560. doi: 10.1641/0006-3568(2004)054[0547:acsmog]2.0.co;2 CrossRefGoogle Scholar
  126. Running SW, Nemani RR, Townshend JRG, Baldocchi DD (2009) Next-generation terrestrial carbon monitoring. In: McPherson BJ, Sundquist ET (eds) Carbon sequestration and its role in the global carbon cycle. Geophysical monograph series, vol 183. American Geophysical Union, Washington, DC, pp 49–69. doi: 10.1029/2006GM000526
  127. Ryan MG, Binkley D, Fownes JH (1997) Age-related decline in forest productivity: pattern and process. Adv Ecol Res 27:213–262. doi: 10.1016/s0065-2504(08)60009-4 CrossRefGoogle Scholar
  128. Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ETA, Salas W, Zutta BR, Buermann W, Lewis SL, Hagen S, Petrova S, White L, Silman M, Morel A (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci USA 108(24):9899–9904. doi: 10.1073/pnas.1019576108 CrossRefGoogle Scholar
  129. Schlamadinger B, Marland G (1996) The role of forest and bioenergy strategies in the global carbon cycle. Biomass Bioenerg 10(5–6):275–300. doi: 10.1016/0961-9534(95)00113-1 CrossRefGoogle Scholar
  130. Schlamadinger B, Apps M, Bohlin F, Gustavsson L, Jungmeier G, Marland G, Pingoud K, Savolainen I (1997) Towards a standard methodology for greenhouse gas balances of bioenergy systems in comparison with fossil energy systems. Biomass Bioenerg 13(6):359–375. doi: 10.1016/s0961-9534(97)10032-0 CrossRefGoogle Scholar
  131. Settele J, Scholes R, Betts R, Bunn S, Leadley P, Stonestrom DA, Nepstad, Overpeck JT, Taboada MA (2014) Terrestrial and inland water systems. In: Field CB, Barros VR, Dokken DJ et al (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 271–359Google Scholar
  132. Shugart HH, Saatchi S, Hall FG (2010) Importance of structure and its measurement in quantifying function of forest ecosystems. J Geophys Res Biogeosci 115. doi: 10.1029/2009jg000993
  133. Siegenthaler U, Stocker TF, Monnin E, Luthi D, Schwander J, Stauffer B, Raynaud D, Barnola JM, Fischer H, Masson-Delmotte V, Jouzel J (2005) Stable carbon cycle-climate relationship during the late Pleistocene. Science 310(5752):1313–1317. doi: 10.1126/science.1120130 CrossRefGoogle Scholar
  134. Sinare H, Gordon LJ (2015) Ecosystem services from woody vegetation on agricultural lands in Sudano-Sahelian West Africa. Agric Environ 200:186–199. doi: 10.1016/j.agee.2014.11.009 CrossRefGoogle Scholar
  135. Sitch S, Friedlingstein P, Gruber N, Jones SD, Murray-Tortarolo G, Ahlstrom A, Doney SC, Graven H, Heinze C, Huntingford C, Levis S, Levy PE, Lomas M, Poulter B, Viovy N, Zaehle S, Zeng N, Arneth A, Bonan G, Bopp L, Canadell JG, Chevallier F, Ciais P, Ellis R, Gloor M, Peylin P, Piao SL, Le Quéré C, Smith B, Zhu Z, Myneni R (2015) Recent trends and drivers of regional sources and sinks of carbon dioxide. BioGeosciences 12(3):653–679. doi: 10.5194/bg-12-653-2015 CrossRefGoogle Scholar
  136. Smith P, Bustamante M, Ahammad H, Clark H, Dong H, Elsiddig EA, Haberl H, Harper R, House J, Jafari M, Masera O, Mbow C, Ravindranath NH, Rice CW, Abad CR, Romanovskaya A, Sperling F, Tubiello F (2014) Agriculture, forestry and other land use (AFOLU). In: Edenhofer O, Pichs-Madruga R, Sokona Y et al (eds) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 811–922Google Scholar
  137. Sochacki SJ, Harper RJ, Smettem KRJ (2012) Bio-mitigation of carbon following afforestation of abandoned salinized farmland. GCB Bioenergy 4(2):193–201. doi: 10.1111/j.1757-1707.2011.01139.x CrossRefGoogle Scholar
  138. Solberg S, Dobbertin M, Reinds GJ, Lange H, Andreassen K, Fernandez PG, Hildingsson A, de Vries W (2009) Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: a stand growth approach. For Ecol Manag 258(8):1735–1750. doi: 10.1016/j.foreco.2008.09.057 CrossRefGoogle Scholar
  139. Song CH, Woodcock CE (2003) A regional forest ecosystem carbon budget model: impacts of forest age structure and landuse history. Ecol Model 164(1):33–47. doi: 10.1016/s0304-3800(03)00013-9 CrossRefGoogle Scholar
  140. Swanson ME, Franklin JF, Beschta RL, Crisafulli CM, DellaSala DA, Hutto RL, Lindenmayer DB, Swanson FJ (2011) The forgotten stage of forest succession: early-successional ecosystems on forest sites. Front Ecol Environ 9(2):117–125. doi: 10.1890/090157 CrossRefGoogle Scholar
  141. Thorburn C (2013) Seeing the forest for the carbon: interrogating reduced emissions from deforestation and degradation (REDD). In: Thorburn C (ed) Critical reflections on development. Springer, pp 139–161Google Scholar
  142. Thornley JHM, Cannell MGR (2004) Long-term effects of fire frequency on carbon storage and productivity of boreal forests: a modeling study. Tree Physiol 24(7):765–773CrossRefGoogle Scholar
  143. Thornton PE, Law BE, Gholz HL, Clark KL, Falge E, Ellsworth DS, Golstein AH, Monson RK, Hollinger D, Falk M, Chen J, Sparks JP (2002) Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agric For Meteorol 113(1–4):185–222. doi: 10.1016/s0168-1923(02)00108-9 CrossRefGoogle Scholar
  144. Tran TV, de Beurs KM, Julian JP (2016) Monitoring forest disturbances in Southeast Oklahoma using landsat and MODIS images. Int J Appl Earth Obs Geoinf 44:42–52. doi: 10.1016/j.jag.2015.07.001 CrossRefGoogle Scholar
  145. UNFCCC (2007) Report of the conference of the parties on its thirteenth session, held in Bali from 3 to 15 December 2007. United Nations Framework Convention on Climate Change (UNFCCC), p 60Google Scholar
  146. UN-REDD (2010) The UN-REDD programme strategy 2011–2015. United Nations, New York, p 22Google Scholar
  147. van Bodegom JA, Savinije H, Wit M (eds) (2009) Forests and climate change: adaptation and mitigation. In: European tropical forest research network, Issue 50. Tropenbos International, Wagenigen, The NetherladsGoogle Scholar
  148. van der Werf GR, Morton DC, DeFries RS, Olivier JGJ, Kasibhatla PS, Jackson RB, Collatz GJ, Randerson JT (2009) CO2 emissions from forest loss. Nat Geosci 2(11):737–738. doi: 10.1038/ngeo671 CrossRefGoogle Scholar
  149. Walther G-R (2010) Community and ecosystem responses to recent climate change. Philos T R Soc B 365(1549):2019–2024. doi: 10.1098/rstb.2010.0021 CrossRefGoogle Scholar
  150. Wang F, D’Sa EJ (2010) Potential of MODIS EVI in identifying hurricane disturbance to coastal vegetation in the Northern Gulf of Mexico. Remote Sens 2(1):1–18. doi: 10.3390/rs2010001 CrossRefGoogle Scholar
  151. Wang S, Zhou L, Chen J, Ju W, Feng X, Wu W (2011) Relationships between net primary productivity and stand age for several forest types and their influence on China’s carbon balance. J Environ Manag 92(6):1651–1662. doi: 10.1016/j.jenvman.2011.01.024 CrossRefGoogle Scholar
  152. Waring RH, Schlesinger WH (1985) Forest ecosystems: concepts and management. Academic Press, New YorkGoogle Scholar
  153. Wei X, Shao M, Gale W, Li L (2014) Global pattern of soil carbon losses due to the conversion of forests to agricultural land. Sci Rep 4:4062–4066. doi: 10.1038/srep04062 http://www.nature.com/articles/srep04062#supplementary-information
  154. Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase western US forest wildfire activity. Science 313(5789):940–943. doi: 10.1126/science.1128834 CrossRefGoogle Scholar
  155. Woodall CW, Domke GM, MacFarlane DW, Oswalt CM (2012) Comparing field- and model-based standing dead tree carbon stock estimates across forests of the US. Forestry 85(1):125–133. doi: 10.1093/forestry/cpr065 CrossRefGoogle Scholar
  156. Wulder MA, White JC, Fournier RA, Luther JE, Magnussen S (2008) Spatially explicit large area biomass estimation: three approaches using forest inventory and remotely sensed imagery in a GIS. Sensors 8(1):529–560. doi: 10.3390/s8010529 CrossRefGoogle Scholar
  157. Yu G, Chen Z, Piao S, Peng C, Ciais P, Wang Q, Li X, Zhu X (2014) High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc Natl Acad Sci USA 111(13):4910–4915. doi: 10.1073/pnas.1317065111 CrossRefGoogle Scholar
  158. Zianis D, Muukkonen P, Makipaa R, Mencuccini M (2005) Biomass and stem volume equations for tree species in Europe. Silva Fenn Monogr (4):1–2, 5–63Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Carbon Management and Sequestration Center, School of Environment and Natural ResourcesThe Ohio State UniversityColumbusUSA

Personalised recommendations