Advertisement

\(\mathbb {N}\)-Memory Automata over the Alphabet \(\mathbb {N}\)

  • Benedikt Brütsch
  • Patrick Landwehr
  • Wolfgang Thomas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10168)

Abstract

The concept of \(\mathbb {N}\)-memory automaton over the alphabet \(\mathbb {N}\) is studied. We show a result on robustness of this model (by a connection to MSO-logic), give a discussion on its expressive power and closure properties, and show among other decidability results the solvability of the non-emptiness problem. We conclude with perspectives for applications and some open questions.

Keywords

Automata and logic Infinite alphabet 

References

  1. 1.
    Bès, A.: An application of the Feferman-Vaught theorem to automata and logics for words over an infinite alphabet. Logical Methods Comput. Sci. 4(1) (2008)Google Scholar
  2. 2.
    Bojańczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on data words. ACM Trans. Comput. Logic 12(4), 27 (2011)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bojańczyk, M., Klin, B., Lasota, S.: Automata theory in nominal sets. Logical Methods Comput. Sci. 10(3) (2014)Google Scholar
  4. 4.
    Brütsch, B., Thomas, W.: Playing games in the Baire space. In: Brihaye, T., Delahaye, B., Jezequel, L., Markey, N., Srba, J. (eds.) Proceedings of Cassting Workshop on Games for the Synthesis of Complex Systems, EPTCS, vol. 220, pp. 13–25 (2016)Google Scholar
  5. 5.
    Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Nagel, E., Suppes, P., Tarski, A. (eds.) Proceedings of the 1960 International Congress on Logic, Methodology and Philosophy of Science, Studies in Logic and the Foundations of Mathematics, vol. 44, pp. 1–11. Elsevier, Amsterdam (1966)Google Scholar
  6. 6.
    Carapelle, C., Feng, S., Kartzow, A., Lohrey, M.: Satisfiability of ECTL* with tree constraints. In: Beklemishev, L.D., Musatov, D.V. (eds.) CSR 2015. LNCS, vol. 9139, pp. 94–108. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-20297-6_7 Google Scholar
  7. 7.
    Czyba, C., Spinrath, C., Thomas, W.: Finite automata over infinite alphabets: two models with transitions for local change. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 203–214. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-21500-6_16 CrossRefGoogle Scholar
  8. 8.
    Ginsburg, S., Greibach, S.A., Harrison, M.A.: One-way stack automata. J. ACM 14(2), 389–418 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kaminski, M., Francez, N.: Finite-memory automata. Theoret. Comput. Sci. 134(2), 329–363 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006). doi: 10.1007/11874683_3 CrossRefGoogle Scholar
  11. 11.
    Spelten, A., Thomas, W., Winter, S.: Trees over infinite structures and path logics with synchronization. In: Yu, F., Wang, C. (eds.) Proceedings of INFINITY 2011, EPTCS, vol. 73, pp. 20–34 (2011)Google Scholar
  12. 12.
    Tan, T.: An automata model for trees with ordered data values. In: Proceedings of LICS 2012, pp. 586–595. IEEE Computer Society (2012)Google Scholar
  13. 13.
    Tan, T.: Extending two-variable logic on data trees with order on data values and its automata. ACM Trans. Comput. Log. 15(1), 8 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 389–455. Springer, Berlin (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Benedikt Brütsch
    • 1
  • Patrick Landwehr
    • 1
  • Wolfgang Thomas
    • 1
  1. 1.Chair of Computer Science 7RWTH Aachen UniversityAachenGermany

Personalised recommendations