Skip to main content

Space Complexity of Reachability Testing in Labelled Graphs

  • Conference paper
  • First Online:
Language and Automata Theory and Applications (LATA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10168))

  • 860 Accesses

Abstract

Fix an algebraic structure \((\mathcal {A}, *)\). Given a graph \(G =(V, E)\) and the labelling function \(\phi \) (\(\phi : E \rightarrow \mathcal {A}\)) for the edges, two nodes s, \(t \in V\), and a subset \(F \subseteq \mathcal {A}\), the \(\mathcal {A}\)-Reach problem asks if there is a path p (need not be simple) from s to t whose yield (result of the operation in the ordered set of the labels of the edges constituting the path) is in F. On the complexity frontier of this problem, we show the following results.

  • When \(\mathcal {A}\) is a group whose size is polynomially bounded in the size of the graph (hence equivalently presented as a multiplication table at the input), and the graph is undirected, the \(\mathcal {A}\)-Reach problem is in \(\mathsf {L}\). Building on this, using a decomposition in [4], we show that, when \(\mathcal {A}\) is a fixed quasi-group, and the graph is undirected, the \(\mathcal {A}\)-Reach problem is in \(\mathsf {L}\). In contrast, we show \(\mathsf {NL}\)-hardness of the problem over bidirected graphs, when \(\mathcal {A}\) is a matrix group over \(\mathbb {Q}\). When \(\mathcal {A}\) is a fixed aperiodic monoid, we show that the problem is \(\mathsf {NL}\)-complete.

  • As our main theorem, we prove a dichotomy for graphs labelled with fixed aperiodic monoids by showing that for every fixed aperiodic monoid \(\mathcal {A}\), \(\mathcal {A}\)-Reach problem is either in \(\mathsf {L}\) or is \(\mathsf {NL}\)-complete.

  • We show that there exists a monoid M, such that the reachability problem in general DAGs can be reduced to \(\mathcal {A}\)-Reach problem for planar non-bipartite DAGs labelled with M. In contrast, we show that if the planar DAGs that we obtain above are bipartite, the problem can be further reduced to reachability testing in planar DAGs and hence is in \(\mathsf {UL}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A language is said to be in unambiguous logspace if there exists a non-deterministic logspace Turing machine M such that \(\forall x\), M has at most one accepting computation.

  2. 2.

    Directed graph (G(V, E)) such that \(\forall v_i,v_j \in V, (v_i,v_j) \in E \implies (v_j,v_i) \in E\). However, \(\phi (v_i,v_j)\) need not be equal to \(\phi (v_j,v_i)\). To complement this, we observe (see Corollary 1) that the log-space upper bound for groups whose size is polynomially bounded in terms of input, holds even for bidirected graphs.

  3. 3.

    We do not use the operator, whenever it is clear from the context. We use 1 and e interchangeably for the identity element.

  4. 4.

    If the size of \(\mathcal {A}\) is fixed (or even polynomially bounded) we will assume that \(|F| = 1\). We also assume that the accepting element a is given as a part of the input. All our results except Theorem 7 hold even if a is fixed apriori.

  5. 5.

    We denote the elements of this monoid by \(\{1, \alpha , \beta , \alpha \beta , \beta \alpha , 0\}\).

References

  1. Allender, E.: Reachability problems: an update. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 25–27. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73001-9_3

    Chapter  Google Scholar 

  2. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  3. David, A., Barrington, M., Thérien, D.: Finite monoids and the fine structure of NC\({}^{\text{1 }}\). J. ACM 35(4), 941–952 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beaudry, M., Lemieux, F., Thérien, D.: Finite loops recognize exactly the regular open languages. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 110–120. Springer, Heidelberg (1997). doi:10.1007/3-540-63165-8_169

    Chapter  Google Scholar 

  5. Beaudry, M., McKenzie, P., Pladeau, P., Thérien, D.: Finite monoids: from word to circuit evaluation. SIAM J. Comput. 26(1), 138–152 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bédard, F., Lemieux, F., McKenzie, P.: Extensions to Barrington’s M-program model. In: Proceedings Fifth Annual Structure in Complexity Theory Conference, pp. 200–209 (1990)

    Google Scholar 

  7. Bourke, C., Tewari, R., Vinodchandran, N.V.: Directed planar reachability is in unambiguous log-space. ACM Trans. Comput. Theory 1(1), 4 (2009)

    Google Scholar 

  8. Caussinus, H., Lemieux, F.: The complexity of computing over quasigroups. In: Thiagarajan, P.S. (ed.) FSTTCS 1994. LNCS, vol. 880, pp. 36–47. Springer, Heidelberg (1994). doi:10.1007/3-540-58715-2_112

    Chapter  Google Scholar 

  9. Chandra, A.K., Fortune, S., Lipton, R.J.: Unbounded fan-in circuits and associative functions. J. Comput. Syst. Sci. 30(2), 222–234 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Das, B., Datta, S., Nimbhorkar, P.: Log-space algorithms for paths and matchings in k-trees. In: 27th STACS, pp. 215–226 (2010)

    Google Scholar 

  11. Geelen, J., Gerards, B.: Excluding a group-labelled graph. J. Comb. Theory Ser. B 99(1), 247–253 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Horwitz, S., Reps, T.W., Binkley, D.: Interprocedural slicing using dependence graphs. ACM Trans. Program. Lang. Syst. 12(1), 26–60 (1990)

    Article  Google Scholar 

  13. Huynh, T.C.T.: The linkage problem for group-labelled graphs. Ph.D. thesis, University of Waterloo (2009)

    Google Scholar 

  14. Kawase, Y., Kobayashi, Y., Yamaguchi, Y.: Finding a path in group-labeled graphs with two labels forbidden. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 797–809. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47672-7_65

    Google Scholar 

  15. Komarath, B., Sarma, J., Sunil, K.S.: On the complexity of L-reachability. Fundam. Inform. 145(4), 471–483 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pin, J.-E., Straubing, H., Therien, D.: Locally trivial categories and unambiguous concatenation. J. Pure Appl. Algebra 52(3), 297–311 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Raymond, J.-F.Ç., Tesson, P., Thérien, D.: An algebraic approach to communication complexity. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 29–40. Springer, Heidelberg (1998). doi:10.1007/BFb0055038

    Chapter  Google Scholar 

  18. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 17 (2008)

    Google Scholar 

  19. Reingold, O., Trevisan, L., Vadhan, S.: Pseudorandom walks on regular digraphs and the RL vs. L problem. In: Proceedings of STOC, pp. 457–466 (2006)

    Google Scholar 

  20. Reps, T.W.: On the sequential nature of interprocedural program-analysis problems. Acta Inform. 33(8), 739–757 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Reps, T.W.: Program analysis via graph reachability. Inf. Softw. Technol. 40(11–12), 701–726 (1998)

    Article  Google Scholar 

  22. Tesson, P.: An algebraic approach to communication complexity. Masters thesis, McGill University, Montreal (1998)

    Google Scholar 

  23. Yannakakis, M.: Graph-theoretic methods in database theory. In: Proceedings of the 9th ACM PODS, pp. 230–242 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Sunil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ramaswamy, V., Sarma, J., Sunil, K.S. (2017). Space Complexity of Reachability Testing in Labelled Graphs. In: Drewes, F., Martín-Vide, C., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2017. Lecture Notes in Computer Science(), vol 10168. Springer, Cham. https://doi.org/10.1007/978-3-319-53733-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53733-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53732-0

  • Online ISBN: 978-3-319-53733-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics