Advertisement

Approximation in Description Logics: How Weighted Tree Automata Can Help to Define the Required Concept Comparison Measures in \(\mathcal {FL}_0\)

  • Franz Baader
  • Oliver Fernández Gil
  • Pavlos Marantidis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10168)

Abstract

Recently introduced approaches for relaxed query answering, approximately defining concepts, and approximately solving unification problems in Description Logics have in common that they are based on the use of concept comparison measures together with a threshold construction. In this paper, we will briefly review these approaches, and then show how weighted automata working on infinite trees can be used to construct computable concept comparison measures for \(\mathcal {FL}_0\) that are equivalence invariant w.r.t. general TBoxes. This is a first step towards employing such measures in the mentioned approximation approaches.

Keywords

Description Logic Regular Tree Equivalence Invariance Tree Automaton Concept Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the future in systems theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1022–1037. Springer, Heidelberg (2003). doi: 10.1007/3-540-45061-0_79 CrossRefGoogle Scholar
  2. 2.
    Baader, F., Borgwardt, S., Morawska, B.: Extending unification in \(\cal{EL}\) towards general TBoxes. In: Proceedings of the 13th International Conference on Principles of Knowledge Representation and Reasoning (KR 2012), pp. 568–572. AAAI Press/The MIT Press (2012)Google Scholar
  3. 3.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \(\cal{EL}\) envelope. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 364–369. Morgan Kaufmann, Los Altos (2005)Google Scholar
  4. 4.
    Baader, F., Brewka, G., Fernández Gil, O.: Adding threshold concepts to the description logic \(\cal{EL}\). In: Lutz, C., Ranise, S. (eds.) FroCoS 2015. LNCS (LNAI), vol. 9322, pp. 33–48. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24246-0_3 CrossRefGoogle Scholar
  5. 5.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  6. 6.
    Baader, F., Fernández Gil, O.: Decidability and complexity of threshold description logics induced by concept similarity measures. In: Proceedings of the 32nd Annual ACM Symposium on Applied Computing (SAC 2017). ACM (2017, to appear)Google Scholar
  7. 7.
    Baader, F., Fernández Gil, O., Marantidis, P.: Approximation in description logics: how weighted tree automata can help to define the required concept comparison measures in \(\cal{FL}_0\). LTCS-report LTCS-16-08, Chair for Automata Theory, Institute for Theoretical Computer Science, TU Dresden, Germany (2016). http://lat.inf.tu-dresden.de/research/reports.html
  8. 8.
    Baader, F., Marantidis, P., Okhotin, A.: Approximate unification in the description logic \(\cal{FL}_0\). In: Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS (LNAI), vol. 10021, pp. 49–63. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-48758-8_4 CrossRefGoogle Scholar
  9. 9.
    Baader, F., Morawska, B.: Unification in the description logic \(\cal{EL}\). Log. Methods Comput. Sci. 6(3), 1–31 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Baader, F., Narendran, P.: Unification of concept terms in description logics. J. Symb. Comput. 31(3), 277–305 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Baader, F., Okhotin, A.: On language equations with one-sided concatenation. Fundam. Inf. 126(1), 1–35 (2013)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Baader, F., Peñaloza, R.: Automata-based axiom pinpointing. J. Autom. Reason. 45(2), 91–129 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Baader, F., Tobies, S.: The inverse method implements the automata approach for modal satisfiability. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 92–106. Springer, Heidelberg (2001). doi: 10.1007/3-540-45744-5_8 CrossRefGoogle Scholar
  14. 14.
    Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 3(1), 133–181 (1922)zbMATHGoogle Scholar
  15. 15.
    Brandt, S.: Polynomial time reasoning in a description logic with existential restrictions, GCI axioms, and–what else? In: Proceedings of the 16th European Conference on Artificial Intelligence (ECAI 2004), pp. 298–302. IOS Press (2004)Google Scholar
  16. 16.
    d’Amato, C., Fanizzi, N., Esposito, F.: A semantic similarity measure for expressive description logics. In: Pettorossi, A. (ed.) Proceedings of Convegno Italiano di Logica Computazionale (CILC05) (2005)Google Scholar
  17. 17.
    Droste, M., Kuske, D.: Skew and infinitary formal power series. Theoret. Comput. Sci. 366(3), 199–227 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Droste, M., Rahonis, G.: Weighted automata and weighted logics with discounting. Theoret. Comput. Sci. 410(37), 3481–3494 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ecke, A., Peñaloza, R., Turhan, A.Y.: Answering instance queries relaxed by concept similarity. In: Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR 2014), pp. 248–257. AAAI Press (2014)Google Scholar
  20. 20.
    Ecke, A., Peñaloza, R., Turhan, A.Y.: Similarity-based relaxed instance queries. J. Appl. Logic 13(4, Part 1), 480–508 (2015). Special Issue for the Workshop on Weighted Logics for AI 2013MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Fülöp, Z., Vogler, H.: Weighted tree automata and tree transducers. In: Droste, M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata, pp. 313–403. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Hoehndorf, R., Schofield, P.N., Gkoutos, G.V.: The role of ontologies in biological and biomedical research: a functional perspective. Brief. Bioinform. 16(6), 1069–1080 (2015)CrossRefGoogle Scholar
  23. 23.
    Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley Classics Library. Wiley, Hoboken (1978)zbMATHGoogle Scholar
  24. 24.
    Küsters, R.: Non-Standard Inferences in Description Logics. LNCS (LNAI), vol. 2100. Springer, Heidelberg (2001). doi: 10.1007/3-540-44613-3_3 zbMATHGoogle Scholar
  25. 25.
    Lehmann, K., Turhan, A.-Y.: A framework for semantic-based similarity measures for \(\cal{ELH}\)-concepts. In: Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol. 7519, pp. 307–319. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33353-8_24 CrossRefGoogle Scholar
  26. 26.
    Mandrali, E., Rahonis, G.: Recognizable tree series with discounting. Acta Cybern. 19(2), 411–439 (2009)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Pan, J.Z., Ren, Y., Zhao, Y.: Tractable approximate deduction for OWL. Artif. Intell. 235, 95–155 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Pensel, M.: An automata based approach for subsumption w.r.t. general concept inclusions in the description logic \(\cal{FL}_0\). Master’s thesis, Chair for Automata Theory, TU Dresden, Germany (2015). http://lat.inf.tu-dresden.de/research/mas
  29. 29.
    Rabin, M.O.: Automata on Infinite Objects and Church’s Problem. American Mathematical Society, Boston (1972)CrossRefzbMATHGoogle Scholar
  30. 30.
    Racharak, T., Suntisrivaraporn, B.: Similarity measures for \(\cal{FL}_0\) concept descriptions from an automata-theoretic point of view. In: 6th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES), pp. 1–6 (2015)Google Scholar
  31. 31.
    Rahonis, G.: Weighted muller tree automata and weighted logics. J. Autom. Lang. Comb. 12(4), 455–483 (2007)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Schild, K.: A correspondence theory for terminological logics: preliminary report. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI 1991), pp. 466–471. Morgan Kaufmann, Los Altos (1991)Google Scholar
  33. 33.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, Hoboken (1999)zbMATHGoogle Scholar
  34. 34.
    Suntisrivaraporn, B.: A similarity measure for the description logic \(\cal{EL}\) with unfoldable terminologies. In: 5th International Conference on Intelligent Networking and Collaborative Systems, pp. 408–413. IEEE (2013)Google Scholar
  35. 35.
    Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics (B), pp. 133–192. The MIT Press (1990)Google Scholar
  36. 36.
    Wolter, F., Zakharyaschev, M.: Undecidability of the unification and admissibility problems for modal and description logics. ACM Trans. Comput. Logic 9(4), 25:1–25:20 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Franz Baader
    • 1
  • Oliver Fernández Gil
    • 1
  • Pavlos Marantidis
    • 1
  1. 1.Theoretical Computer ScienceTU DresdenDresdenGermany

Personalised recommendations