Advertisement

Explorative Analysis of Recommendations Through Interactive Visualization

  • Christian RichthammerEmail author
  • Günther Pernul
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 278)

Abstract

Even though today’s recommender algorithms are highly sophisticated, they can hardly take into account the users’ situational needs. An obvious way to address this is to initially inquire the users’ momentary preferences, but the users’ inability to accurately state them upfront may lead to the loss of several good alternatives. Hence, this paper suggests to generate the recommendations without such additional input data from the users and let them interactively explore the recommended items on their own. To support this explorative analysis, a novel visualization tool based on treemaps is developed. The analysis of the prototype demonstrates that the interactive treemap visualization facilitates the users’ comprehension of the big picture of available alternatives and the reasoning behind the recommendations. This helps the users get clear about their situational needs, inspect the most relevant recommendations in detail, and finally arrive at informed decisions.

Keywords

Recommender systems Interactive visualization Search space Explorative analysis 

Notes

Acknowledgments

The research leading to these results was supported by the “Bavarian State Ministry of Education, Science and the Arts” as part of the FORSEC research association. The authors would like to thank Kilian Müller and Regina Staller for the implementation of the prototype used in this paper.

References

  1. 1.
    Hill, W., Stead, L., Rosenstein, M., Furnas, G.: Recommending and evaluating choices in a virtual community of use. In: Proceedings of the 13th SIGCHI Conference on Human Factors in Computing Systems (CHI), pp. 194–201 (1995)Google Scholar
  2. 2.
    Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: an open architecture for collaborative filtering of netnews. In: Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work (CSCW), pp. 175–186 (1994)Google Scholar
  3. 3.
    Resnick, P., Varian, H.R.: Recommender systems. Commun. ACM 40(3), 56–58 (1997)CrossRefGoogle Scholar
  4. 4.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)CrossRefGoogle Scholar
  5. 5.
    Konstan, J.A., Riedl, J.: Recommender systems: from algorithms to user experience. User Model. User Adapt. Interact. 22(1–2), 101–123 (2012)CrossRefGoogle Scholar
  6. 6.
    Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)CrossRefGoogle Scholar
  7. 7.
    Netflix: The Netflix prize rules. http://www.netflixprize.com/rules (2009). Accessed 19 Apr 2016
  8. 8.
    Loepp, B., Herrmanny, K., Ziegler, J.: Blended recommending: integrating interactive information filtering and algorithmic recommender techniques. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI), pp. 975–984 (2015)Google Scholar
  9. 9.
    Pu, P., Chen, L., Hu, R.: Evaluating recommender systems from the user’s perspective: survey of the state of the art. User Model. User Adapt. Interact. 22(4–5), 317–355 (2012)CrossRefGoogle Scholar
  10. 10.
    Knijnenburg, B.P., Willemsen, M.C., Gantner, Z., Soncu, H., Newell, C.: Explaining the user experience of recommender systems. User Model. User Adapt. Interact. 22(4–5), 441–504 (2012)CrossRefGoogle Scholar
  11. 11.
    McNee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough: how accuracy metrics have hurt recommender systems. In: CHI 2006 Extended Abstracts on Human Factors in Computing Systems, pp. 1097–1101 (2006)Google Scholar
  12. 12.
    Swearingen, K., Sinha, R.: Beyond algorithms: an HCI perspective on recommender systems. In: Proceedings of the ACM SIGIR Workshop on Recommender Systems (2001)Google Scholar
  13. 13.
    Burke, R.: Knowledge-based recommender systems. In: Kent, A. (ed.) Encyclopedia of Library and Information Science, vol. 69 - Supplement 32, pp. 180–200. Marcel Dekker, Inc., New York (2000)Google Scholar
  14. 14.
    Burke, R., Hammond, K., Young, B.: Knowledge-based navigation of complex information spaces. In: Proceedings of the 13th National Conference on Artificial Intelligence (AAAI), pp. 462–468 (1996)Google Scholar
  15. 15.
    Herrmanny, K., Schering, S., Berger, R., Loepp, B., Günter, T., Hussein, T., Ziegler, J.: MyMovieMixer: Ein hybrider Recommender mit visuellem Bedienkonzept. In: Mensch und Computer 2014 - Tagungsband, pp. 45–54 (2014)Google Scholar
  16. 16.
    Tintarev, N., Masthoff, J.: A survey of explanations in recommender systems. In: Proceedings of the 23rd International Conference on Data Engineering Workshop (ICDE), pp. 801–810 (2007)Google Scholar
  17. 17.
    Smyth, B.: Case-based recommendation. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 342–376. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-72079-9_11 CrossRefGoogle Scholar
  18. 18.
    Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28(1), 75–105 (2004)Google Scholar
  19. 19.
    Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24(3), 45–77 (2007)CrossRefGoogle Scholar
  20. 20.
    O’Donovan, J., Smyth, B., Gretarsson, B., Bostandjiev, S., Höllerer, T.: PeerChooser: visual interactive recommendation. In: Proceedings of the 26th SIGCHI Conference on Human Factors in Computing Systems (CHI), pp. 1085–1088 (2008)Google Scholar
  21. 21.
    Gretarsson, B., O’Donovan, J., Bostandjiev, S., Hall, C., Höllerer, T.: SmallWorlds: visualizing social recommendations. Comput. Graph. Forum 29(3), 833–842 (2010)CrossRefGoogle Scholar
  22. 22.
    Gou, L., You, F., Guo, J., Wu, L., Zhang, X.: SFViz: Interest-based friends exploration and recommendation in social networks. In: Proceedings of the 2011 International Symposium on Visual Information Communication (VINCI), pp. 1–10 (2011)Google Scholar
  23. 23.
    Bostandjiev, S., O’Donovan, J., Höllerer, T.: TasteWeights: a visual interactive hybrid recommender system. In: Proceedings of the 6th ACM Conference on Recommender Systems (RecSys), pp. 35–42 (2012)Google Scholar
  24. 24.
    Parra, D., Brusilovsky, P., Trattner, C.: See what you want to see: visual user-driven approach for hybrid recommendation. In: Proceedings of the 19th International Conference on Intelligent User Interfaces (IUI), pp. 235–240 (2014)Google Scholar
  25. 25.
    Gansner, E., Hu, Y., Kobourov, S., Volinsky, C.: Putting recommendations on the map: visualizing clusters and relations. In: Proceedings of the 3rd ACM Conference on Recommender Systems (RecSys), pp. 345–348 (2009)Google Scholar
  26. 26.
    Kagie, M., van Wezel, M., Groenen, P.J.: Map based visualization of product catalogs. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 547–576. Springer, Boston (2011)CrossRefGoogle Scholar
  27. 27.
    Verbert, K., Parra, D., Brusilovsky, P., Duval, E.: Visualizing recommendations to support exploration, transparency and controllability. In: Proceedings of the 18th International Conference on Intelligent User Interfaces (IUI), pp. 351–362 (2013)Google Scholar
  28. 28.
    Tintarev, N., Masthoff, J.: Designing and evaluating explanations for recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 479–510. Springer, Boston (2011)CrossRefGoogle Scholar
  29. 29.
    Katarya, R., Jain, I., Hasija, H.: An interactive interface for instilling trust and providing diverse recommendations. In: Proceedings of the International Conference on Computer and Communication Technology (ICCCT), pp. 17–22 (2014)Google Scholar
  30. 30.
    Weskamp, M.: Newsmap. http://newsmap.jp/ (2010). Accessed 19 Apr 2016
  31. 31.
    Johnson, B., Shneiderman, B.: Tree-maps: a space-filling approach to the visualization of hierarchical information structures. In: Proceedings of the 2nd Conference on Visualization (VIS), pp. 284–291 (1991)Google Scholar
  32. 32.
    Shneiderman, B.: Tree visualization with tree-maps: 2-D space-filling approach. ACM Trans. Graph. 11(1), 92–99 (1992)CrossRefzbMATHGoogle Scholar
  33. 33.
    Gasteier, K., Krois, K., Hrdina, F.: Exploratory search and content discovery: the semantic media browser (SMB). In: Proceedings of the 13th International Conference on Knowledge Management and Knowledge Technologies (i-Know), pp. 1–8 (2013)Google Scholar
  34. 34.
    Gemignani, Z.: 10 Lessons in Treemap Design. http://www.juiceanalytics.com/writing/10-lessons-treemap-design (2009). Accessed 19 Apr 2016
  35. 35.
    Vig, J., Sen, S., Riedl, J.: Tagsplanations: explaining recommendations using tags. In: Proceedings of the 14th International Conference on Intelligent User Interfaces (IUI), pp. 47–56 (2009)Google Scholar
  36. 36.
    Sinha, R., Swearingen, K.: The role of transparency in recommender systems. In: Extended Abstracts on Human Factors in Computing Systems (CHI EA), pp. 830–831 (2002)Google Scholar
  37. 37.
    Herlocker, J.L., Konstan, J.A., Riedl, J.: Explaining collaborative filtering recommendations. In: Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work (CSCW), pp. 241–250 (2000)Google Scholar
  38. 38.
    Harper, F.M., Konstan, J.A.: The MovieLens datasets: history and context. ACM Trans. Interact. Intell. Syst. 5(4), 1–19 (2016)CrossRefGoogle Scholar
  39. 39.
    Rubens, N., Elahi, M., Sugiyama, M., Kaplan, D.: Active learning in recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 809–846. Springer, Boston (2015)CrossRefGoogle Scholar
  40. 40.
    Chen, L., Pu, P.: Critiquing-based recommenders: survey and emerging trends. User Model. User Adapt. Interact. 22(1–2), 125–150 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Information SystemsUniversity of RegensburgRegensburgGermany

Personalised recommendations