Plant Breeding for Improving Nutrient Uptake and Utilization Efficiency

  • Antonio FerranteEmail author
  • Fabio Francesco Nocito
  • Silvia Morgutti
  • Gian Attilio Sacchi
Part of the Advances in Olericulture book series (ADOL)


Mineral nutrients are essential for plants where they play specific metabolic functions. Macronutrients are required in higher quantities, while micronutrients in smaller amounts. Deprivation or paucity of any macro- or microelement has negative effects on plant development and yield, potentially impairing the plant capability of reaching and completing the reproductive phase. Therefore, the evolution of mechanisms able to maintain the tissue mineral nutrient homeostasis in response to changes in their availability in the growth substrate is a key factor under both the evolutionary (biological) and agricultural (yield performance) points of view.

The supply/availability/plant intake and assimilation of mineral nutrients are often limited by extrinsic (i.e., environmental) and intrinsic (developmental, biochemical, physiological), plant-related factors. Since all of the latter are under genetic control, use of efficient plant breeding procedures for improving the complex trait of plant nutrient utilization efficiency is of paramount importance. This issue is made more compelling since intensive agriculture, necessary to satisfy the increasing food demand on Earth’s scale, requires, in order to reintroduce into the soil the mineral nutrients removed with plant harvest, the use of large amounts of fertilizers posing serious soil, air and water pollution concerns.

Nitrogen, with phosphorus and potassium, is the macronutrient that more deeply affects crop production.

The chapter presents a survey of the main molecular aspects determining the biochemical and physiological bottlenecks that limit Nutrient/Nitrogen Use Efficiency (Nu/NUE) in crop plants, with particular focus on leafy vegetables. The most innovative molecular approaches applicable to overcome these restraints, based upon the use of novel genome- and transcriptome-based technologies, are reviewed.


Fertilizers Mineral nutrition Molecular markers Nitrogen Next generation sequencing Quantitative trait loci 






Amino Acid Permease 5


Ammonium Transporter


Apparent Recovery


Asparagine Syntethase


AsparagineSynthetase-encoding gene family


AminoacidTransportFamily gene family


Agronomic nutrient Use Efficiency

CaMV 35S

Cauliflower Mosaic Virus 35S


constitutive HATS elements


CBL-Interacting Protein Kinase 23


ChLorideTransporters gene family


Carbamoyl Phosphate Synthetase


Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-associated9


Dicarboxylate/Tricarboxylate Carrier


Ethyl Methane Sulfonate


Flavin Adenine Dinucleotide






Glutamate Dehydrogenase


Genetically Modified Organism


Glutamine-2-OxoGlutarate Amino Transferase


Glutamine Syntethase


Glutathione, reduced


Glutathione disulphide


Genome-Wide Association Studies


High-Affinity Transport System


Isocitrate Dehydrogenase


inducible HATS elements




Michaelis-Menten’s constant


Low-Affinity Transport System


Lysine Histidine Transporter 1


Marker-Assisted Selection


Major Intrinsic Membrane Proteins


Nicotinamide Adenine Dinucleotide, oxidized


Nicotinamide Adenine Dinucleotide, reduced


Nicotinamide Adenine Dinucleotide Phosphate


NitrateAssimilationRelated gene


Nitrate Excretion Transporter1


Next Generation Sequencing



NIA gene

nitrate reductase gene


Near-Isogenic Line


Nitrite Reductase






Nitrate Transporter 1/Peptide Transporter gene family


Nitrate Reductase


Nitrogen Remobilization Efficiency


Nitrate Transporter


Nitrogen Use Efficiency


Nutrient/Nitrogen Use Efficiency


Nutrient Use Efficiency


OxaloAcetic Acid


Physiological Efficiency


PhosphoenolPyruvate Carboxylase


Phosphoglyceric Acid


Plasma Membrane




Peptide Transporter


Quantitative Trait Loci


Removal Efficiency


Recombinant Inbred Line


Root System Architecture


Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase


Steep, Cheap, and Deep


Single Nucleotide Polymorphism


Tri-Carboxylic Acids


  1. Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone AM, Hu TT, Jiang R, Muliyati NW, Zhang X, Amer MA, Baxter I, Brachi B, Chory J, Dean C, Debieu M, de Meaux J, Ecker JR, Faure N, Kniskern JM, Jones JD, Michael T, Nemri A, Roux F, Salt DE, Tang C, Todesco M, Traw MB, Weigel D, Marjoram P, Borevitz JO, Bergelson J, Nordborg M (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465(7298):627–631PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bai H, Euring D, Volmer K, Janz D, Polle A (2013) The nitrate transporter (NRT) gene family in poplar. PLoS One 8(8):e72126, 1–12Google Scholar
  3. Barabaschi D, Tondelli A, Desiderio F, Volante A, Vaccino P, Valè G, Cattivelli L (2016) Next generation breeding. Plant Sci 242:3–13PubMedCrossRefGoogle Scholar
  4. Bauwe H, Hagemann M, Fernie AR (2010) Photorespiration: players, partners and origin. Trends Plant Sci 15(6):330–336PubMedCrossRefGoogle Scholar
  5. Bernard SM, Habash DZ (2009) The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytol 182(3):608–620PubMedCrossRefGoogle Scholar
  6. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33(1):41–52PubMedCrossRefGoogle Scholar
  7. Britto DT, Kronzucker HJ (2002) NH4 + toxicity in higher plants: a critical review. J Plant Physiol 159(6):567–584CrossRefGoogle Scholar
  8. Brown TB, Cheng R, Sirault XXR, Rungrat T, Murray KD, Trtilek M, Furbank RT, Badger M, Pogson BJ, Borevitz JO (2014) TraitCapture: genomic and environment modelling of plant phenomic data. Curr Opin Plant Biol 18:73–79PubMedCrossRefGoogle Scholar
  9. Bucksch A, Burridge J, York LM, Das A, Nord E, Weitz JS, Lynch JP (2014) Image-based high-throughput field phenotyping of crop roots. Plant Physiol 166(1):470–486PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cavaiuolo M, Ferrante A (2014) Nitrates and glucosinolates as strong determinants of the nutritional quality in rocket leafy salads. Nutrition 6(4):1519–1538Google Scholar
  11. Chan-Navarrete R, Dolstra O, van Kaauwen M, Lammerts T, van Bueren C, van der Linden G (2015) Genetic map construction and QTL analysis of nitrogen use efficiency in spinach (Spinacia oleracea L.) Euphytica 199(1-2):155–166CrossRefGoogle Scholar
  12. Chardon F, Barthélémy J, Daniel-Vedele F, Masclaux-Daubresse C (2010) Natural variation of nitrate uptake and nitrogen use efficiency in Arabidopsis thaliana cultivated with limiting and ample nitrogen supply. J Exp Bot 61(9):2293–2302PubMedCrossRefGoogle Scholar
  13. Cliquet J-B, Deléens E, Mariotti A (1990) C and N mobilization from stalk to leaves during kernel filling by 13C and 15N tracing in Zea mays L. Plant Physiol 94(4):1547–1553PubMedPubMedCentralCrossRefGoogle Scholar
  14. Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142(1-2):169–196CrossRefGoogle Scholar
  15. Craswell ET, Godwin DC (1984) The efficiency of nitrogen fertilizers applied to cereals grown in different climates. In: Tinker PB, Lauchli A (eds) Advances in plant nutrition, vol 1. Praeger Publishers, New York, pp 1–55Google Scholar
  16. Crawford NM, Glass ADM (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci 3(10):389–395CrossRefGoogle Scholar
  17. Curtis IS, Power JB, de Laat AMM, Caboche M, Davey MR (1999) Expression of a chimeric nitrate reductase gene in transgenic lettuce reduces nitrate in leaves. Plant Cell Rep 18(11):889–896CrossRefGoogle Scholar
  18. Dawson JC, Huggins DR, Jones SS (2008) Characterizing nitrogen use efficiency to improve crop performance in organic and sustainable agricultural systems. Field Crop Res 107(2):89–101CrossRefGoogle Scholar
  19. de Dorlodot S, Forster B, Pagès L, Price A, Tuberosa R, Draye X (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12(10):474–481PubMedCrossRefGoogle Scholar
  20. Dechorgnat J, Nguyen CT, Armengaud P, Jossier M, Diatloff E, Filleur S, Daniel-Vedele F (2011) From the soil to the seeds: the long journey of nitrate in plants. J Exp Bot 62(4):1349–1359PubMedCrossRefGoogle Scholar
  21. Delgado JA, Follett RF, Shaffer MJ (2000) Simulation of nitrate-nitrogen dynamics for cropping systems with different rooting depths. Soil Sci Soc Am J 64(3):1050–1054CrossRefGoogle Scholar
  22. Diaz C, Lemaître T, Christ A, Azzopardi M, Kato Y, Sato F, Morot-Gaudry J-F, Le Dily F, Masclaux-Daubresse C (2008) Nitrogen recycling and remobilization are differently controlled by leaf senescence and development stage in Arabidopsis under low nitrogen nutrition. Plant Physiol 147(3):1437–1449PubMedPubMedCentralCrossRefGoogle Scholar
  23. Djennane S, Chauvin JE, Quilleré I, Meyer C, Chupeau Y (2002) Introduction and expression of a deregulated tobacco nitrate reductase gene in potato lead to highly reduced nitrate levels in transgenic tubers. Transgenic Res 11(2):175–184PubMedCrossRefGoogle Scholar
  24. Djennane S, Quilleré I, Leydecker M-T, Meyer C, Chauvin JE (2004) Expression of a deregulated tobacco nitrate reductase gene in potato increases biomass production and decreases nitrate concentration in all organs. Planta 219(5):884–893PubMedCrossRefGoogle Scholar
  25. Fiorani F, Schurr U (2013) Future scenarios for plant phenotyping. Annu Rev Plant Biol 64:267–291PubMedCrossRefGoogle Scholar
  26. Food and Agriculture Organization of the United Nations (2015) World fertilizer trends and outlook to 2018. Accessed 6 Nov 2016
  27. Forde BG (2000) Nitrate transporters in plants: structure, function and regulation. Biochim Biophys Acta 1465(1-2):219–235PubMedCrossRefGoogle Scholar
  28. Forde BG (2002) Local and long-range signaling pathways regulating plant responses to nitrate. Annu Rev Plant Physiol Plant Mol Biol 53:203–224CrossRefGoogle Scholar
  29. Foyer CH, Noctor G, Hodges M (2011) Respiration and nitrogen assimilation: targeting mitochondria-associated metabolism as a means to enhance nitrogen use efficiency. J Exp Bot 62(4):1467–1482PubMedCrossRefGoogle Scholar
  30. Gallais A, Hirel B (2004) An approach to the genetics of nitrogen use efficiency in maize. J Exp Bot 55(396):295–306PubMedCrossRefGoogle Scholar
  31. Galvan A, Fernandez E (2001) Eukaryotic nitrate and nitrite transporters. Cell Mol Life Sci 58(2):225–233PubMedCrossRefGoogle Scholar
  32. Habash DZ, Bernard S, Schondelmaier J, Weyen J, Quarrie SA (2007) The genetics of nitrogen use in hexaploid wheat: N utilisation, development and yield. Theor Appl Genet 114(3):403–419PubMedCrossRefGoogle Scholar
  33. Han M, Okamoto M, Beatty PH, Rothstein SJ, Good AG (2015) The genetics of nitrogen use efficiency in crop plants. Annu Rev Genet 49:269–289PubMedCrossRefGoogle Scholar
  34. Harper AL, Trick M, Higgins J, Fraser F, Clissold L, Wells R, Hattori C, Werner P, Bancroft I (2012) Associative transcriptomics of traits in the polyploid crop species Brassica napus. Nat Biotechnol 30(8):798–802PubMedCrossRefGoogle Scholar
  35. Ho CH, Tsay YF (2010) Nitrate, ammonium and potassium sensing and signaling. Curr Opin Plant Biol 13(5):604–610PubMedCrossRefGoogle Scholar
  36. Ho CH, Lin SH, Hu HC, Tsay YF (2009) CHL1 functions as a nitrate sensor in plants. Cell 138(6):1184–1194PubMedCrossRefGoogle Scholar
  37. Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321(1-2):153–187CrossRefGoogle Scholar
  38. Hodges M, Flesch V, Gálvez S, Bismuth E (2003) Higher plant NADP-dependent isocitrate dehydrogenases, ammonium assimilation and NADPH production. Plant Physiol Biochem 41(6-7):577–585CrossRefGoogle Scholar
  39. Hu B, Wang W, Ou S, Tang J, Li H, Che R, Zhang Z, Chai X, Wang H, Wang Y, Liang C, Liu L, Piao Z, Deng Q, Deng K, Xu C, Liang Y, Zhang L, Li L, Chu C (2015) Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet 47(7):834–838PubMedCrossRefGoogle Scholar
  40. Huang X, Han B (2014) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65:531–551PubMedCrossRefGoogle Scholar
  41. Huang NC, Liu KH, Lo HJ, Tsay YF (1999) Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell 11(8):1381–1392PubMedPubMedCentralCrossRefGoogle Scholar
  42. Ishiyama K, Inoue E, Watanabe-Takahashi A, Obara M, Yamaya T, Takahashi H (2004) Kinetic properties and ammonium-dependent regulation of cytosolic isoenzymes of glutamine synthetase in Arabidopsis. J Biol Chem 279(16):16598–16605PubMedCrossRefGoogle Scholar
  43. Khademi S, O’Connell J 3rd, Remis J, Robles-Colmenares Y, Miercke LJW, Stroud RM (2004) Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 Å. Science 305(5690):1587–1594PubMedCrossRefGoogle Scholar
  44. Kichey T, Hirel B, Heumez E, Dubois F, Le Gouis J (2007) In winter wheat (Triticum aestivum L.), post-anthesis nitrogen uptake and remobilisation to the grain correlates with agronomic traits and nitrogen physiological markers. Field Crop Res 102(1):22–32Google Scholar
  45. Koprivova A, Harper A, Trick M, Bancroft I, Kopriva S (2014) Dissection of control of anion homeostasis by associative transcriptomics in Brassica napus. Plant Physiol 166(1):442–450PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kronzucker HJ, Glass ADM, Siddiqi MY (1999a) Inhibition of nitrate uptake by ammonium in barley. Analysis of component fluxes. Plant Physiol 120(1):283–291PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kronzucker HJ, Siddiqi MY, Glass ADM, Kirk GJD (1999b) Nitrate-ammonium synergism in rice. A subcellular flux analysis. Plant Physiol 119(3):1041–1045PubMedPubMedCentralCrossRefGoogle Scholar
  48. Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K, Zazimalova E, Benkova E, Nacry P, Gojon A (2010) Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell 18(6):927–937PubMedCrossRefGoogle Scholar
  49. Kumagai E, Araki T, Hamaoka N, Ueno O (2011) Ammonia emission from rice leaves in relation to photorespiration and genotypic differences in glutamine synthetase activity. Ann Bot 108(7):1381–1386PubMedPubMedCentralCrossRefGoogle Scholar
  50. Lanquar V, Loqué D, Hörmann F, Yuan L, Bohner A, Engelsberger WR, Lalonde S, Schulze WX, von Wirén N, Frommer WB (2009) Feedback inhibition of ammonium uptake by a phospho-dependent allosteric mechanism in Arabidopsis. Plant Cell 21(11):3610–3622PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lauter FR, Ninnemann O, Bucher M, Riesmeier W, Frommer WB (1996) Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hair of tomato. Proc Natl Acad Sci U S A 93(15):8139–8144PubMedPubMedCentralCrossRefGoogle Scholar
  52. Lejay L, Tillard P, Lepetit M, Olive F, Filleur S, Daniel-Vedele F, Gojon A (1999) Molecular and functional regulation of two NO3 - uptake systems by N- and C-status of Arabidopsis plants. Plant J 18(5):509–519PubMedCrossRefGoogle Scholar
  53. Lemaître T, Gaufichon L, Boutet-Mercey S, Christ A, Masclaux-Daubresse C (2008) Enzymatic and metabolic diagnostic of nitrogen deficiency in Arabidopsis thaliana Wassileskija accession. Plant Cell Physiol 49(7):1056–1065PubMedCrossRefGoogle Scholar
  54. Léran S, Varala K, Boyer JC, Chiurazzi M, Crawford N, Daniel-Vedele F, David L, Dickstein R, Fernandez E, Forde B, Gassmann W, Geiger D, Gojon A, Gong JM, Halkier BA, Harris JM, Hedrich R, Limami AM, Rentsch D, Seo M, Tsay YF, Zhang M, Coruzzi G, Lacombe B (2014) A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends Plant Sci 19(1):5–9PubMedCrossRefGoogle Scholar
  55. Lillo C (2008) Signalling cascades integrating light-enhanced nitrate metabolism. Biochem J 415(1):11–19PubMedCrossRefGoogle Scholar
  56. Lipson D, Näsholm T (2001) The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia 128(3):305–316PubMedCrossRefGoogle Scholar
  57. Lynch JP (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 112(2):347–357PubMedPubMedCentralCrossRefGoogle Scholar
  58. Maghrebi M, Nocito FF, Sacchi GA (2014) Monitoring plant nutritional status. In: Hawkesford MJ, Kopriva S, De Kok LJ (eds) Nutrient use efficiency in plants, Concepts and approaches. Plant ecophysiology series, vol 10. Springer, Cham, pp 253–272Google Scholar
  59. Malagoli P, Laine P, Le Deunff E, Rossato L, Ney B, Ourry A (2004) Modeling nitrogen uptake in oilseed rape cv Capitol during a growth cycle using influx kinetics of root nitrate transport systems and field experimental data. Plant Physiol 134(1):388–400PubMedPubMedCentralCrossRefGoogle Scholar
  60. Malagoli P, Laine P, Rossato L, Ourry A (2005) Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape (Brassica napus) from stem extension to harvest. Ann Bot 95(5):853–861PubMedPubMedCentralCrossRefGoogle Scholar
  61. Malhi SS, Brandt SA, Ulrich D, Lemke R, Gill KS (2002) Accumulation and distribution of nitrate-nitrogen and extractable phosphorus in the soil profile under various alternative cropping systems. J Plant Nutr 25(11):2499–2520CrossRefGoogle Scholar
  62. Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105(7):1141–1157PubMedPubMedCentralCrossRefGoogle Scholar
  63. Masumoto C, Miyazawa S, Ohkawa H, Fukuda T, Taniguchi Y, Murayama S, Kusano M, Saito K, Fukayama H, Miyao M (2010) Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proc Natl Acad Sci U S A 107(11):5226–5231PubMedPubMedCentralCrossRefGoogle Scholar
  64. McAllister CH, Beatty PH, Good AG (2012) Engineering nitrogen use efficient crop plants: the current status. Plant Biotechnol J 10(9):1011–1025PubMedCrossRefGoogle Scholar
  65. Mickelson S, See D, Meyer FD, Garner JP, Foster CR, Blake TK, Fischer AM (2003) Mapping of QTL associated with nitrogen storage and remobilization in barley (Hordeum vulgare L.) leaves. J Exp Bot 54(383):801–812PubMedCrossRefGoogle Scholar
  66. Miller AJ, Smith SJ (2008) Cytosolic nitrate ion homeostasis, could it have a role in sensing nitrogen status? Ann Bot 101(4):485–489PubMedCrossRefGoogle Scholar
  67. Miller AJ, Fan X, Orsel M, Smith SJ, Wells DM (2007) Nitrate transport and signalling. J Exp Bot 58(9):2297–2306PubMedCrossRefGoogle Scholar
  68. Monachello D, Allot M, Oliva S, Krapp A, Daniel-Vedele F, Barbier-Brygoo H, Ephritikhine G (2009) Two anion transporters AtClCa and AtClCe fulfil interconnecting but not redundant roles in nitrate assimilation pathways. New Phytol 183(1):88–94PubMedCrossRefGoogle Scholar
  69. Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182(1):41–48CrossRefGoogle Scholar
  70. Neuhäuser B, Dynowski M, Mayer M, Ludewig U (2007) Regulation of NH4 + transport by essential cross talk between AMT monomers through the carboxyl tails. Plant Physiol 143(4):1651–1659PubMedPubMedCentralCrossRefGoogle Scholar
  71. Obara M, Kajiura M, Fukuta Y, Yano M, Hayashi M, Yamaya T, Sato T (2001) Mapping of QTLs associated with cytosolic glutamine synthetase and NADH-glutamate synthase in rice (Oryza sativa L.) J Exp Bot 52(359):1209–1217PubMedGoogle Scholar
  72. Obara M, Sato T, Sasaki S, Kashiba K, Nagano A, Nakamura I, Ebitani T, Yano M, Yamaya T (2004) Identification and characterization of a QTL on chromosome 2 for cytosolic glutamine synthetase content and panicle number in rice. Theor Appl Genet 110(1):1–11PubMedCrossRefGoogle Scholar
  73. Okamoto M, Kumar A, Li W, Wang Y, Siddiqi MY, Crawford NM, Glass AD (2006) High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1. Plant Physiol 140(3):1036–1046Google Scholar
  74. Okumoto S, Pilot G (2011) Amino acid export in plants: a missing link in nitrogen cycling. Mol Plant 4(3):453–463PubMedPubMedCentralCrossRefGoogle Scholar
  75. Ortiz-Ramirez C, Mora SI, Trejo J, Pantoja O (2011) PvAMT1;1, a highly selective ammonium transporter that functions as an H+/NH4 + symporter. J Biol Chem 286(36):31113–31122PubMedPubMedCentralCrossRefGoogle Scholar
  76. Paez-Valencia J, Sanchez-Lares J, Marsh E, Dorneles LT, Santos MP, Sanchez D, Winter A, Murphy S, Cox J, Trzaska M, Metler J, Kozic A, Facanha AR, Schachtman D, Sanchez CA, Gaxiola RA (2013) Enhanced proton translocating pyrophosphatase activity improves nitrogen use efficiency in Romaine lettuce. Plant Physiol 161(3):1557–1569PubMedPubMedCentralCrossRefGoogle Scholar
  77. Pao SS, Paulsen IT, Saier MH Jr (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62(1):1–34PubMedPubMedCentralGoogle Scholar
  78. Pearson JN, Finnemann J, Schjerning JK (2002) Transcriptional regulation of the high-affinity ammonium transporter (BnAMT1;2) in the leaves of Brassica napus by nitrogen status. Plant Mol Biol 49(5):483–490PubMedCrossRefGoogle Scholar
  79. Pedersen A, Zhang K, Thorup-Kristensen K, Jensen LS (2010) Modelling diverse root density dynamics and deep nitrogen uptake. A simple approach. Plant Soil 326(1-2):493–510CrossRefGoogle Scholar
  80. Pilbeam DJ (2015) Breeding crops for improved mineral nutrition under climate change conditions. J Exp Bot 66(12):3511–3521PubMedCrossRefGoogle Scholar
  81. Potel F, Valadier M-H, Ferrario-Méry S, Grandjean O, Morin H, Gaufichon L, Boutet-Mercey S, Lothier J, Rothstein SJ, Hirose N, Suzuki A (2009) Assimilation of excess ammonium into amino acids and nitrogen translocation in Arabidopsis thaliana – roles of glutamate synthase and carbamoyl phosphate synthetase in leaves. FEBS J 276(15):4061–4076PubMedCrossRefGoogle Scholar
  82. Quraishi UM, Abrouk M, Murat F, Pont C, Foucrier S, Desmaizieres G, Confolent C, Rivière N, Charmet G, Paux E, Murigneux A, Guerreiro L, Lafarge S, Le Gouis J, Feuillet C, Salse J (2011) Cross-genome map based dissection of a nitrogen use efficiency ortho-meta QTL in bread wheat unravels concerted cereal genome evolution. Plant J 65(5):745–756PubMedCrossRefGoogle Scholar
  83. Rachmilevitch S, Cousins AB, Bloom AJ (2004) Nitrate assimilation in plant shoots depends on photorespiration. Proc Natl Acad Sci U S A 101(31):11506–11510PubMedPubMedCentralCrossRefGoogle Scholar
  84. Raun WR, Johnson GV (1999) Improving nitrogen use efficiency for cereal production. Agron J 91(3):357–363CrossRefGoogle Scholar
  85. Raun WR, Johnson GV, Westerman RL (1999) Fertilizer nitrogen recovery in long-term continuous winter wheat. Soil Sci Soc Am J 63(3):645–650CrossRefGoogle Scholar
  86. Research Council UK (2016) Super-rice: a UK-China collaboration to improve rice Nitrogen Use Efficiency (NUE) Accessed 9 Nov 2016
  87. Ritchie RJ (2006) Estimation of cytoplasmic nitrate and its electrochemical potential in barley roots using 13NO3 - and compartmental analysis. New Phytol 171(3):643–655PubMedGoogle Scholar
  88. Robinson D (1994) The responses of plants to non-uniform supplies of nutrients. New Phytol 127(4):635–674CrossRefGoogle Scholar
  89. Safeena AN, Wahid PA, Balachandran PV, Sachdev MS (1999) Absorption of molecular urea by rice under flooded and non-flooded soil conditions. Plant Soil 208(2):161–166CrossRefGoogle Scholar
  90. Samborski SM, Tremblay N, Fallon E (2009) Strategies to make use of plant sensors-based diagnostic information for nitrogen recommendations. Agron J 101(4):800–816CrossRefGoogle Scholar
  91. Santamaria P (2006) Nitrate in vegetables: toxicity, content, intake and EC regulation. J Sci Food Agric 86(1):10–17CrossRefGoogle Scholar
  92. Schlemmer MR, Francis DD, Shanahan JF, Schepers JS (2005) Remotely measuring chlorophyll content in corn leaves with differing nitrogen levels and relative water content. Agron J 97(1):106–112CrossRefGoogle Scholar
  93. Schroppelmeier G, Kaiser WM (1988) Ion homeostasis in chloroplasts under salinity and mineral deficiency. 1. Solute concentrations in leaves and chloroplasts from spinach plants under NaCl or NaNO3 salinity. Plant Physiol 87(4):822–827CrossRefGoogle Scholar
  94. Segonzac C, Boyer JC, Ipotesi E, Szponarski W, Tillard P, Touraine B, Sommerer N, Rossignol M, Gibrat R (2007) Nitrate efflux at the root plasma membrane: identification of an Arabidopsis excretion transporter. Plant Cell 19(11):3760–3777PubMedPubMedCentralCrossRefGoogle Scholar
  95. Siddiqi MY, Glass ADM (2002) An evaluation of the evidence for, and implications of, cytoplasmic nitrate homeostasis. Plant Cell Environ 25(10):1211–1217CrossRefGoogle Scholar
  96. Stebbins N, Holland MA, Cianzio SR, Polacco JC (1991) Genetic test of the roles of the embryonic urease of soybean. Plant Physiol 97(3):1004–1010PubMedPubMedCentralCrossRefGoogle Scholar
  97. Sweetlove LJ, Beard KFM, Nunes-Nesi A, Fernie AR, Ratcliffe RG (2010) Not just a circle: flux modes in the plant TCA cycle. Trends Plant Sci 15(8):462–470PubMedCrossRefGoogle Scholar
  98. Tilman DG, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671–677PubMedCrossRefGoogle Scholar
  99. von der Fecht-Bartenbach J, Bogner M, Dynowski M, Ludewig U (2010) CLC-b-mediated NO3 +/H+ exchange across the tonoplast of Arabidopsis vacuoles. Plant Cell Physiol 51(6):960–968PubMedCrossRefGoogle Scholar
  100. von Wirén N, Gazzarrini S, Gojon A, Frommer WB (2000) The molecular physiology of ammonium uptake and retrieval. Curr Opin Plant Biol 3(3):254–261CrossRefGoogle Scholar
  101. von Wittgenstein NJ, Le CH, Hawkins BJ, Ehlting J (2014) Evolutionary classification of ammonium, nitrate, and peptide transporters in land plants. BMC Evol Biol 14(1):1–17CrossRefGoogle Scholar
  102. Wang R, Okamoto M, Xing X, Crawford NM (2003) Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1, 000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol 132(2):556–567PubMedPubMedCentralCrossRefGoogle Scholar
  103. Wang WH, Köhler B, Cao FQ, Liu LH (2008) Molecular and physiological aspects of urea transport in higher plants. Plant Sci 175(4):467–477CrossRefGoogle Scholar
  104. Wang R, Xing X, Wang Y, Tran A, Crawford NM (2009) A genetic screen for nitrate regulatory mutants captures the nitrate transporter gene NRT1.1. Plant Physiol 151(1):472–478PubMedPubMedCentralCrossRefGoogle Scholar
  105. Wang WH, Köhler B, Cao FQ, Liu GW, Gong YY, Sheng S, Song QC, Cheng XY, Garnett T, Okamoto M, Qin R, Mueller-Roeber B, Tester M, Liu LH (2012) Rice DUR3 mediates high-affinity urea transport and plays an effective role in improvement of urea acquisition and utilization when expressed in Arabidopsis. New Phytol 193(2):432–444PubMedCrossRefGoogle Scholar
  106. Witte C, Tiller SA, Taylor MA, Davies HV (2002) Leaf urea metabolism in potato. Urease activity profiles and patterns of recovery and distribution of 15N after foliar urea application in wild-type and urease-antisense transgenics. Plant Physiol 128(3):1129–1136PubMedPubMedCentralCrossRefGoogle Scholar
  107. Xu G, Fan X, Miller AT (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182PubMedCrossRefGoogle Scholar
  108. Zanin L, Tomasi N, Wirdnam C, Meyer S, Komarova NY, Mimmo T, Cesco S, Rentsch D, Pinton R (2014) Isolation and functional characterization of a high affinity urea transporter from roots of Zea mays. BMC Plant Biol 14:222–237PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Antonio Ferrante
    • 1
    Email author
  • Fabio Francesco Nocito
    • 1
  • Silvia Morgutti
    • 1
  • Gian Attilio Sacchi
    • 1
  1. 1.Department of Agricultural and Environmental Sciences – Production, Landscape, AgroenergyUniversità degli Studi di MilanoMilanItaly

Personalised recommendations