Advertisement

Acoustic DoA Estimation by One Unsophisticated Sensor

  • Dalia El BadawyEmail author
  • Ivan Dokmanić
  • Martin Vetterli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10169)

Abstract

We show how introducing known scattering can be used in direction of arrival estimation by a single sensor. We first present an analysis of the geometry of the underlying measurement space and show how it enables localizing white sources. Then, we extend the solution to more challenging non-white sources like speech by including a source model and considering convex relaxations with group sparsity penalties. We conclude with numerical simulations using an unsophisticated sensing device to validate the theory.

Keywords

Monaural localization Compressed sensing Direction of arrival Group sparsity Scattering Sound source localization 

References

  1. 1.
    Blauert, J.: Spatial Hearing: The Psychophysics of Human Sound Localization. The MIT Press, Cambridge (1997)Google Scholar
  2. 2.
    Dokmanić, I.: Listening to Distances and Hearing Shapes: Inverse Problems in Room Acoustics and Beyond. Ph.D. thesis, École polytechnique fédérale de Lausanne (2015)Google Scholar
  3. 3.
    El Badawy, D.: Acoustic sensing using scattering microphones. Master’s thesis, École polytechnique fédérale de Lausanne, July 2015Google Scholar
  4. 4.
    Friedman, J., Hastie, T., Tibshirani, R.: A note on the group lasso and a sparse group lasso. arXiv (2010)Google Scholar
  5. 5.
    Geuzaine, C., Remacle, J.F.: Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Meth. Eng. 79(11), 1309–1331 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ledoux, M.: The concentration of measure phenomenon. Mathematical Surveys and Monographs. American Mathematical Society, Providence (R.I.) (2001)Google Scholar
  7. 7.
    Lessard, N., Pare, M., Lepore, F., Lassonde, M.: Early-blind human subjects localize sound sources better than sighted subjects. Nature 395(6699), 278–280 (1998)CrossRefGoogle Scholar
  8. 8.
    Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 123–231 (2014)Google Scholar
  9. 9.
    Saxena, A., Ng, A.: Learning sound location from a single microphone. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1737–1742 (2009)Google Scholar
  10. 10.
    Schnupp, J., Nelken, I., King, A.: Auditory Neuroscience: Making Sense of Sound. The MIT Press, Cambridge (2010)Google Scholar
  11. 11.
    Slattery, W.H.I., Middlebrooks, J.C.: Monaural sound localization: acute versus chronic unilateral impairment. Hear. Res. 139(6), 38–46 (1994)CrossRefGoogle Scholar
  12. 12.
    Śmigaj, W., Betcke, T., Arridge, S., Phillips, J., Schweiger, M.: Solving boundary integral problems with BEM++. ACM Trans. Math. Softw. 41(2), 6:1–6:40 (2015)MathSciNetGoogle Scholar
  13. 13.
    Tolstoy, A.: Applications of matched-field processing to inverse problems in underwater acoustics. Inverse Prob. 16(6), 1655 (2000)CrossRefzbMATHGoogle Scholar
  14. 14.
    Xie, Y., Tsai, T., Konneker, A., Popa, B., Brady, D.J., Cummer, S.A.: Single-sensor multispeaker listening with acoustic metamaterials. Proc. Natl. Acad. Sci. 112(34), 10595–10598 (2015)CrossRefGoogle Scholar
  15. 15.
    Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B (Statistical Methodology) 68(1), 49–67 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Dalia El Badawy
    • 1
    Email author
  • Ivan Dokmanić
    • 2
  • Martin Vetterli
    • 1
  1. 1.École Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.University of Illinois at Urbana-ChampaignChampaignUSA

Personalised recommendations