Hydrokinetic Tidal Energy Resource Assessments Using Numerical Models

  • Kevin Haas
  • Zafer Defne
  • Xiufeng Yang
  • Brittany Bruder


Hyrdokinetic tidal energy is the conversion of tidal current kinetic energy to another more useful form, frequently electricity. As with any other form of renewable energy, resource assessments are essential for the tidal energy project planning and design process. While tidal currents have significant spatial and temporal variability, the predictability of tidal flows makes deterministic modeling a suitable methodology for hydrokinetic tidal energy resource assessments. The scope (theoretical, technical, or practical resource) and scale (turbine, region, or project) of the assessment determine the basic concepts and methodology to be utilized and are described in this chapter. At the turbine scale, the technical resource is frequently quantified as the annual energy production (AEP) computed based on the velocity probability distribution for the specific location as well as the turbine properties. The uncertainty associated with the estimates of the AEP is highly dependent on the accuracy of the tidal constituent amplitudes and phases. Regional resource assessments are frequently used to determine the feasibility of tidal power at the scale of an estuary, using numerical models to predict the spatial distribution of the power density. In addition, simplified models or even analytical analysis can be done to produce an upper bound on the regional theoretical power, although with a high level of uncertainty due to the simplifications and assumptions. Resource assessments at the project scale provide both the theoretical and the technical energy as well as the practical energy accounting for many additional constraints, including social, economic, and environmental restrictions. The International Electrotechnical Commission technical specification for tidal energy resource assessments (IEC 2015) provides the essential guidelines for performing project-scale resource assessments. These guidelines include minimum grid resolution requirements as well as model calibration and validation procedures. In addition, larger projects will need to include the effect of energy extraction on the flow field to produce more accurate estimates of velocity probability distributions for computing the technical resource. An example case study demonstrating a regional feasibility and project-scale resource assessment is presented in this chapter.


Tidal energy Resource assessments Numerical modeling Hydrokinetic energy Energy extraction 


  1. Adcock, T. A., & Draper, S. (2014). Power extraction from tidal channels–multiple tidal constituents, compound tides and overtides. Renewable Energy, 63, 797–806.CrossRefGoogle Scholar
  2. Adcock, T. A., Draper, S., Houlsby, G. T., Borthwick, A. G., & Serhadlıoğlu, S. (2014). Tidal stream power in the Pentland Firth–long-term variability, multiple constituents and capacity factor. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy.Google Scholar
  3. Adcock, T. A., Draper, S., & Nishino, T. (2015). Tidal power generation—A review of hydrodynamic modelling. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy.Google Scholar
  4. Arbic, B. K., & Garrett, C. (2010). A coupled oscillator model of shelf and ocean tides. Continental Shelf Research, 30(6), 564–574.CrossRefGoogle Scholar
  5. Ben Elghali, S. E., Benbouzid, M. E. H., & Charpentier, J. F. (2007). Marine tidal current electric power generation technology: State of the art and current status. In IEEE International Electric Machines & Drives Conference, 2007 IEMDC’07 (Vol. 2, pp. 1407–1412). IEEE.Google Scholar
  6. Betz, A. (1920). Das maximum der theoretisch möglichen ausnützung des windes durch windmotoren. Zeitschrift für das gesamte Turbinenwesen, 26(8), 307–309.Google Scholar
  7. Blanchfield, J., Garrett, C., Wild, P., & Rowe, A. (2008). The extractable power from a channel linking a bay to the open ocean. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 222(3), 289–297.Google Scholar
  8. Blunden, L. S., & Bahaj, A. S. (2006). Initial evaluation of tidal stream energy resources at Portland Bill. UK. Renewable Energy, 31(2), 121–132.CrossRefGoogle Scholar
  9. Blunden, L. S., & Bahaj, A. S. (2007). Tidal energy resource assessment for tidal stream generators. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 221(2), 137–146.Google Scholar
  10. Bomminayuni, S., Bruder, B., Stoesser, T., & Haas, K. (2012). Assessment of hydrokinetic energy near Rose Dhu Island, Georgia. Journal of Renewable and Sustainable Energy, 4(6), 063107.CrossRefGoogle Scholar
  11. Brooks, D. A. (2011). The hydrokinetic power resource in a tidal estuary: The Kennebec river of the central maine coast. Renewable Energy, 36(5), 1492–1501.CrossRefGoogle Scholar
  12. Bruder, B., Bomminayuni, S., Haas, K., & Stoesser, T. (2014). Modeling tidal distortion in the Ogeechee Estuary. Ocean Modelling, 82, 60–69.CrossRefGoogle Scholar
  13. Bruder, B. & Haas, K. (2014). Tidal Distortion as Pertains to Hydrokinetic Turbine Selection and Resource Assessment. Marine Energy Technology Symposium, April 2014, Seattle, WA.Google Scholar
  14. Carballo, R., Iglesias, G., & Castro, A. (2009). Numerical model evaluation of tidal stream energy resources in the Ría de Muros (NW Spain). Renewable Energy, 34(6), 1517–1524.CrossRefGoogle Scholar
  15. Defne, Z., Haas, K. A., Fritz, H. M., Jiang, L., French, S. P., Shi, X., et al. (2012). National geodatabase of tidal stream power resource in USA. Renewable and Sustainable Energy Reviews, 16(5), 3326–3338.CrossRefGoogle Scholar
  16. Defne, Z., Haas, K. A., & Fritz, H. M. (2011). Numerical modeling of tidal currents and the effects of power extraction on estuarine hydrodynamics along the Georgia coast. USA. Renewable Energy, 36(12), 3461–3471.CrossRefGoogle Scholar
  17. Funke, S. W., Farrell, P. E., & Piggott, M. D. (2014). Tidal turbine array optimisation using the adjoint approach. Renewable Energy, 63, 658–673.CrossRefGoogle Scholar
  18. Garrett, C., & Cummins, P. (2005). The power potential of tidal currents in channels. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society. 461(2060), 2563–2572.Google Scholar
  19. Garrett, C., & Cummins, P. (2007). The efficiency of a turbine in a tidal channel. Journal of Fluid Mechanics, 588, 243–251.CrossRefzbMATHGoogle Scholar
  20. Gorban, A. N., Gorlov, A. M., & Silantyev, V. M. (2001). Limits of the turbine efficiency for free fluid flow. Journal of Energy Resources Technology, 123(4), 311–317.CrossRefGoogle Scholar
  21. Gunawan, B., Neary, V. S., & Colby, J. (2014). Tidal energy site resource assessment in the East River tidal strait, near Roosevelt Island, New York, New York. Renewable Energy, 71, 509–517.CrossRefGoogle Scholar
  22. Hakim, A. R., Cowles, G. W., & Churchill, J. H. (2013). The Impact of Tidal Stream Turbines on Circulation and Sediment Transport in Muskeget Channel, MA. Marine Technology Society Journal, 47(4), 122–136.CrossRefGoogle Scholar
  23. Harrison, M. E., Batten, W. M. J., Myers, L. E., & Bahaj, A. S. (2010). Comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines. IET Renewable Power Generation, 4(6), 613–627.CrossRefGoogle Scholar
  24. Hasegawa, D., Sheng, J., Greenberg, D. A., & Thompson, K. R. (2011). Far-field effects of tidal energy extraction in the Minas Passage on tidal circulation in the Bay of Fundy and Gulf of Maine using a nested-grid coastal circulation model. Ocean Dynamics, 61(11), 1845–1868.CrossRefGoogle Scholar
  25. IEC (2013). TS 62600–1:2013 Marine energy—Wave, tidal and other water current converters—Part 1: Terminology.Google Scholar
  26. IEC (2014). TS 62600-200:2014 Marine energy—Wave, tidal and other water current converters—Part 200: Power performance assessment of electricity producing tidal energy converters.Google Scholar
  27. IEC (2015). TS 62600-201:2015 Marine energy—Wave, tidal and other water current converters - Part 201: Tidal energy resource assessment and characterization.Google Scholar
  28. Iglesias, G., Sánchez, M., Carballo, R., & Fernández, H. (2012). The TSE index–a new tool for selecting tidal stream sites in depth-limited regions. Renewable Energy, 48, 350–357.CrossRefGoogle Scholar
  29. Jo, C., Yim, J., Lee, K., & Rho, Y. (2012). Performance of horizontal axis tidal current turbine by blade configuration. Renewable Energy, 42, 195–206.CrossRefGoogle Scholar
  30. Joukowsky, N. E. (1920). Windmill of the NEJ type. Transactions of the Central Institute for Aero-hydrodynamics of Moscow, 1, 57.Google Scholar
  31. Karsten, R. H., McMillan, J. M., Lickley, M. J., & Haynes, R. D. (2008). Assessment of tidal current energy in the Minas Passage, Bay of Fundy. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 222(5), 493–507.Google Scholar
  32. Lanchester, F. W. (1915). A contribution to the theory of propulsion and the screw propeller. Journal of the American Society for Naval Engineers, 27(2), 509–510.CrossRefGoogle Scholar
  33. Lawn, C. J. (2003). Optimization of the power output from ducted turbines. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 217(1), 107–117.Google Scholar
  34. Lewis, M., Neill, S. P., Robins, P. E., & Hashemi, M. R. (2015). Resource assessment for future generations of tidal-stream energy arrays. Energy, 83, 403–415.CrossRefGoogle Scholar
  35. Naksrisuk, C., & Audomvongseree, K. (2013). Dependable capacity evaluation of wind power and solar power generation systems. 2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (pp. 1–6). IEEE.Google Scholar
  36. National Research Council (NRC). (2013). An Evaluation of the U.S. Department of Energy’s Marine and Hydrokinetic Resource Assessments. The National Academies Press.Google Scholar
  37. Neary, V. S., Gunawan, B., & Sale, D. C. (2013). Turbulent inflow characteristics for hydrokinetic energy conversion in rivers. Renewable and Sustainable Energy Reviews, 26, 437–445.CrossRefGoogle Scholar
  38. Pacheco, A., & Ferreira, Ó. (2016). Hydrodynamic changes imposed by tidal energy converters on extracting energy on a real case scenario. Applied Energy, 180, 369–385.CrossRefGoogle Scholar
  39. Polagye, B. & Bedard, R. (2006). Tidal in-stream energy resource assessment for Southeast Alaska. Electric Power Research Institute.Google Scholar
  40. Polagye, B. L., Epler, J., & Thomson, J. (2010). Limits to the predictability of tidal current energy. OCEANS 2010 (pp. 1–9). IEEE.Google Scholar
  41. Polagye, B., Kawase, M., & Malte, P. (2009). In-stream tidal energy potential of Puget Sound, Washington. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 223(5), 571–587.Google Scholar
  42. Polagye, B. L., & Malte, P. C. (2011). Far-field dynamics of tidal energy extraction in channel networks. Renewable Energy, 36(1), 222–234.CrossRefGoogle Scholar
  43. Polagye, B., & Thomson, J. (2013). Tidal energy resource characterization: methodology and field study in Admiralty Inlet, Puget Sound, WA (USA). Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 0957650912470081.Google Scholar
  44. Rao, S., Xue, H., Bao, M., & Funke, S. (2016). Determining tidal turbine farm efficiency in the Western Passage using the disc actuator theory. Ocean Dynamics, 66(1), 41–57.CrossRefGoogle Scholar
  45. Ramos, V., Carballo, R., Álvarez, M., Sánchez, M., & Iglesias, G. (2014). A port towards energy self-sufficiency using tidal stream power. Energy, 71, 432–444.CrossRefGoogle Scholar
  46. Roc, T., Conley, D. C., & Greaves, D. (2013). Methodology for tidal turbine representation in ocean circulation model. Renewable Energy, 51, 448–464.CrossRefGoogle Scholar
  47. Shapiro, G. I. (2011). Effect of tidal stream power generation on the region-wide circulation in a shallow sea. Ocean Science, 7(1), 165.CrossRefGoogle Scholar
  48. Shi, W., Wang, D., Atlar, M., & Seo, K. C. (2013). Flow separation impacts on the hydrodynamic performance analysis of a marine current turbine using CFD. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 227(8), 833–846.Google Scholar
  49. Stock-Williams, C., Parkinson, S., & Gunn, K. (2013). An investigation of uncertainty in yield prediction for tidal current farms. 10th European wave and tidal energy conference (EWTEC).Google Scholar
  50. Sutherland, G., Foreman, M., & Garrett, C. (2007). Tidal current energy assessment for Johnstone Strait, Vancouver Island. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 221(2), 147–157.Google Scholar
  51. Tang, H. S., Kraatz, S., Qu, K., Chen, G. Q., Aboobaker, N., & Jiang, C. B. (2014). High-resolution survey of tidal energy towards power generation and influence of sea-level-rise: A case study at coast of New Jersey, USA. Renewable and Sustainable Energy Reviews, 32, 960–982.CrossRefGoogle Scholar
  52. Vennell, R. (2010). Tuning turbines in a tidal channel. Journal of Fluid Mechanics, 663, 253–267.MathSciNetCrossRefzbMATHGoogle Scholar
  53. Vennell, R. (2011). Tuning tidal turbines in-concert to maximise farm efficiency. Journal of Fluid Mechanics, 671, 587–604.MathSciNetCrossRefzbMATHGoogle Scholar
  54. Vennell, R. (2012). Realizing the potential of tidal currents and the efficiency of turbine farms in a channel. Renewable Energy, 47, 95–102.CrossRefGoogle Scholar
  55. Vennell, R., Funke, S. W., Draper, S., Stevens, C., & Divett, T. (2015). Designing large arrays of tidal turbines: A synthesis and review. Renewable and Sustainable Energy Reviews, 41, 454–472.CrossRefGoogle Scholar
  56. Walters, R. A., Tarbotton, M. R., & Hiles, C. E. (2013). Estimation of tidal power potential. Renewable Energy, 51, 255–262.CrossRefGoogle Scholar
  57. Work, P. A., Haas, K. A., Defne, Z., & Gay, T. (2013). Tidal stream energy site assessment via three-dimensional model and measurements. Applied Energy, 102, 510–519.CrossRefGoogle Scholar
  58. Yang, X., & Haas, K. A. (2015). Improving assessments of tidal power potential using grid refinement in the coupled ocean-atmosphere-wave-sediment transport model. Journal of Renewable and Sustainable Energy, 7(4), 043107.CrossRefGoogle Scholar
  59. Yang, Z., & Wang, T. (2015). Modeling the effects of tidal energy extraction on estuarine hydrodynamics in a stratified estuary. Estuaries and Coasts, 38(1), 187–202.CrossRefGoogle Scholar
  60. Yang, Z., Wang, T., & Copping, A. E. (2013). Modeling tidal stream energy extraction and its effects on transport processes in a tidal channel and bay system using a three-dimensional coastal ocean model. Renewable Energy, 50, 605–613.CrossRefGoogle Scholar
  61. Yang, Z., Wang, T., Copping, A., & Geerlofs, S. (2014). Modeling of in-stream tidal energy development and its potential effects in Tacoma Narrows, Washington, USA. Ocean and Coastal Management, 99, 52–62.CrossRefGoogle Scholar
  62. Yuce, M. I., & Muratoglu, A. (2015). Hydrokinetic energy conversion systems: A technology status review. Renewable and Sustainable Energy Reviews, 43, 72–82.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Kevin Haas
    • 1
  • Zafer Defne
    • 2
  • Xiufeng Yang
    • 3
  • Brittany Bruder
    • 4
  1. 1.Georgia Institute of TechnologyAtlantaUSA
  2. 2.United States Geological SurveyWoods HoleUSA
  3. 3.Chevron Energy Technology CompanyHoustonUSA
  4. 4.University of DelawareNewarkUSA

Personalised recommendations