Skip to main content

Image Acquisition for Creation of a 3D Model: CT, CMR, and Echocardiography

  • Chapter
  • First Online:
Rapid Prototyping in Cardiac Disease

Abstract

3D imaging datasets from cardiac computed tomography (CT), magnetic resonance imaging (CMR), or echocardiography can be used to create 3D virtual models for 3D printing. Although CT imaging is not considered first line to diagnose congenital heart disease, it has significant advantages when a 3D printed cardiac model is needed. Advantages over ultrasound include ability to depict vascular and non-vascular extracardiac structures and coronary anatomy with high tissue contrast between lumen and myocardium/vessel wall. CTA also offers superior spatial resolution to MRI, is more widely available, and can be acquired in shorter imaging times. Compared to cardiac CT, CMR offers the advantages of lack of radiation exposure, better temporal resolution, and good blood to myocardium differentiation without the necessary use of intravenous contrast. Echocardiography on the other hand allows real-time image acquisition often without the need for sedation, provides detailed images of valve anatomy, and is a readily available technology which does not routinely require much advanced notice for use of an ultrasound machine. This chapter covers the details of each technology including descriptions of imaging protocols and settings that may be applied to optimize images to be used for 3D printed model creation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shiraishi I, Yamagishi M, Hamaoka K, Fukuzawa M, Yagihara T. Simulative operation on congenital heart disease using rubber-like urethane stereolithographic biomodels based on 3D datasets of multislice computed tomography. Eur J Cardiothorac Surg. 2010;37(2):302.

    PubMed  Google Scholar 

  2. Greil GF, Wolf I, Kuettner A, et al. Stereolithographic reproduction of complex cardiac morphology based on high spatial resolution imaging. Clin Res Cardiol. 2007;96(3):176.

    Article  CAS  PubMed  Google Scholar 

  3. Maragiannis D, Jackson MS, Igo SR, et al. Replicating patient-specific severe aortic valve stenosis with functional 3D modeling. Circ Cardiovasc Imaging. 2015;8(10):e003626.

    Article  PubMed  Google Scholar 

  4. Han BK, Rigsby CK, Hlavacek A, et al. Computed tomography imaging in patients with congenital heart disease part I: rationale and utility. An expert consensus document of the society of Cardiovascular Computed Tomography (SCCT): endorsed by the Society of Pediatric Radiology (SPR) and the north American Society of Cardiac Imaging (NASCI). J Cardiovasc Comput Tomogr. 2015;9(6):475.

    Article  PubMed  Google Scholar 

  5. American College of Cardiology Foundation Task Force on Expert Consensus D, Hundley WG, Bluemke DA et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation task force on expert consensus documents. J Am Coll Cardiol. 2010;55(23):2614.

    Google Scholar 

  6. Han BK, Rigsby CK, Leipsic J, et al. Computed tomography imaging in patients with congenital heart disease, part 2: technical recommendations. An expert consensus document of the society of Cardiovascular Computed Tomography (SCCT): Endorsed by the Society of Pediatric Radiology (SPR) and the North American Society of Cardiac Imaging (NASCI). J Cardiovasc Comput Tomogr. 2015;9(6):493.

    Article  PubMed  Google Scholar 

  7. Han BK, Lindberg J, Overman D, et al. Safety and accuracy of dual-source coronary computed tomography angiography in the pediatric population. J Cardiovasc Comput Tomogr. 2012;6(4):252.

    Article  PubMed  Google Scholar 

  8. Rigsby CK, Gasber E, Seshadri R, et al. Safety and efficacy of pressure-limited power injection of iodinated contrast medium through central lines in children. AJR Am J Roentgenol. 2007;188(3):726.

    Article  PubMed  Google Scholar 

  9. Shuman WP, Leipsic JA, Busey JM, et al. Prospectively ECG gated CT pulmonary angiography versus helical ungated CT pulmonary angiography: impact on cardiac related motion artifacts and patient radiation dose. Eur J Radiol. 2012;81(9):2444.

    Article  PubMed  Google Scholar 

  10. Halliburton S, Arbab-Zadeh A, Dey D, et al. State-of-the-art in CT hardware and scan modes for cardiovascular CT. J Cardiovasc Comput Tomogr. 2012;6(3):154.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Halliburton SS, Abbara S, Chen MY, et al. SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT. J Cardiovasc Comput Tomogr. 2011;5(4):198.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Siegel MJ, Hildebolt C, Bradley D. Effects of automated kilovoltage selection technology on contrast-enhanced pediatric CT and CT angiography. Radiology. 2013;268(2):538.

    Article  PubMed  Google Scholar 

  13. Jadhav SP, Golriz F, Atweh LA, Zhang W, Krishnamurthy R. CT angiography of neonates and infants: comparison of radiation dose and image quality of target mode prospectively ECG-gated 320-MDCT and ungated helical 64-MDCT. AJR Am J Roentgenol. 2015;204(2):W184.

    Article  PubMed  Google Scholar 

  14. Huang MP, Liang CH, Zhao ZJ, et al. Evaluation of image quality and radiation dose at prospective ECG-triggered axial 256-slice multi-detector CT in infants with congenital heart disease. Pediatr Radiol. 2011;41(7):858.

    Article  PubMed  Google Scholar 

  15. Son SS, Choo KS, Jeon UB, et al. Image quality of CT angiography with model-based iterative reconstruction in young children with congenital heart disease: comparison with filtered back projection and adaptive statistical iterative reconstruction. Int J Cardiovasc Imaging. 2015;31(Suppl 1):31.

    Article  PubMed  Google Scholar 

  16. Mottl-Link S, Hübler M, Kühne T, Rietdorf U, Krueger JJ, Schnackenburg B, et al. Physical models aiding in complex congenital heart surgery. Ann Thorac Surg. 2008;86(1):273–7.

    Article  PubMed  Google Scholar 

  17. Vranicar M, Gregory W, Douglas WI, Di Sessa P, Di Sessa TG. The use of stereolithographic hand held models for evaluation of congenital anomalies of the great arteries. Stud Health Technol Inform. 2008;132:538–43.

    PubMed  Google Scholar 

  18. Farooqi KM, Nielsen JC, Uppu SC, Srivastava S, Parness I, Sanz J, Nguyen K. Use of 3D printing to demonstrate complex intra-cardiac relationships in double outlet right ventricle for surgical planning. Circ Cardiovasc Imaging. 2015;8(5):e003043.

    Article  PubMed  Google Scholar 

  19. Farooqi KM, Gonzalez-Lengua C, Weinberg AD, Nielsen JC, Sanz J. Blood pool segmentation results in superior virtual cardiac models than myocardial segmentation for 3D printing. Pediatr Cardiol. 2016.

    Google Scholar 

  20. Groves EM, Bireley W, Dill K, Carroll TJ, Carr JC. Quantitative analysis of ECG-gated high-resolution contrast-enhanced MR angiography of the thoracic aorta. AJR Am J Roentgenol. 2007;188(2):522–8.

    Article  PubMed  Google Scholar 

  21. Foo TK, Ho VB, Marcos HB, Hood MN, Choyke PL. MR angiography using steady-state free precession. Magn Reson Med. 2002;48(4):699–706.

    Article  PubMed  Google Scholar 

  22. Lang RM, Badano LP, Tsang W, Adams DH, Agricola E, Buck T, et al. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. Eur Heart J Cardiovasc Imaging. 2012;13(1):1–46.

    Article  PubMed  Google Scholar 

  23. Roberson DA, Cui W, Patel D, Tsang W, Sugeng L, Weinert L, et al. Three-dimensional transesophageal echocardiography of atrial septal defect: a qualitative and quantitative anatomic study. J Am Soc Echocardiogr. 2011;24(6):600–10.

    Article  PubMed  Google Scholar 

  24. Pushparajah K, Miller OI, Simpson JM. 3D echocardiography of the atrial septum: anatomical features and landmarks for the echocardiographer. JACC Cardiovasc Imaging. 2010;3(9):981–4.

    Article  PubMed  Google Scholar 

  25. Simpson JM, Miller O. Three-dimensional echocardiography in congenital heart disease. Arch Cardiovasc Dis. 2011;104(1):45–56.

    Article  PubMed  Google Scholar 

  26. Lang RM, Badano LP, Tsang W, Adams DH, Agricola E, Buck T, et al. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. J Am Soc Echocardiogr. 2012;25(1):3–46.

    Article  PubMed  Google Scholar 

  27. Olivieri LJ, Krieger A, Loke YH, Nath DS, Kim PC, Sable CA. Three-dimensional printing of intracardiac defects from three-dimensional echocardiographic images: feasibility and relative accuracy. J Am Soc Echocardiogr. 2015;28(4):392–7.

    Article  PubMed  Google Scholar 

  28. Witschey WR, Pouch AM, McGarvey JR, Ikeuchi K, Contijoch F, Levack MM, et al. Three-dimensional ultrasound-derived physical mitral valve modeling. Ann Thorac Surg. 2014;98(2):691–4.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pouch AM, Yushkevich PA, Jackson BM, Jassar AS, Vergnat M, Gorman JH, et al. Development of a semi-automated method for mitral valve modeling with medial axis representation using 3D ultrasound. Med Phys. 2012;39(2):933–50.

    Article  PubMed  Google Scholar 

  30. Pouch AM, Wang H, Takabe M, Jackson BM, Gorman JH 3rd, Gorman RC, et al. Fully automatic segmentation of the mitral leaflets in 3D transesophageal echocardiographic images using multi-atlas joint label fusion and deformable medial modeling. Med Image Anal. 2014;18(1):118–29.

    Google Scholar 

  31. Pouch AM, Xu C, Yushkevich PA, Jassar AS, Vergnat M, Gorman JH 3rd, et al. Semi-automated mitral valve morphometry and computational stress analysis using 3D ultrasound. J Biomech. 2012;45(5):903–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Nielsen MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sanz, J., Farooqi, K.M., Nielsen, J.C., Srivastava, S. (2017). Image Acquisition for Creation of a 3D Model: CT, CMR, and Echocardiography. In: Farooqi, K. (eds) Rapid Prototyping in Cardiac Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-53523-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53523-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53522-7

  • Online ISBN: 978-3-319-53523-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics