Huge Slope Collapses Flashing the Andean Active Orogenic Front (Argentinean Precordillera 31–33°S) Open image in new window

  • Sebastián Junquera Torrado
  • Stella Maris MoreirasEmail author
  • Sergio A. Sepúlveda
Conference paper


The study area is located along the Andean active orogenic front comprising the most seismically active region of Argentina. Main Quaternary deformation is concentrated in this Western central part of the country associated with active faults linked to an intense shallow seismic activity (<35 km depth). During the last 150 years, the region has suffered at least six major earthquakes with a magnitude greater than Ms ≥ 7.0. The focus of this research is to analyse the landslide behaviour along this Andean active orogenic front. To that end, we carried out a landslide inventory along Precordillera (31°–33°S). We analysed type, size, activity grade and other morphological parameters of these landslides. We found huge collapses coincide with traces of active Quaternary faults in this region. However, landslides are clustered being denser splayed in the centre of study area. Furthermore, activity grade of such landslides is higher in this central zone decreasing gradually towards the north and the south. This central area is affected by the Juan Fernandez Ridge which is likely related to higher deformation rate.


Quaternary Neotectonics Active fault Earthquakes 



This study is part of the Ph thesis of S. Junquera. Funds come from ANLAC program of National University of Cuyo leader by Prof. Moreiras and the project FONDECYT 1140317 leader by Prof. Sepúlveda.


  1. Abele G (1984) Derrumbes de montaña y morenas en los Andes chilenos. Revista de Geografía Norte Grande 11:17–30Google Scholar
  2. Alvarado P, Pardo M, Gilbert H, Miranda S, Anderson M, Saez M, Beck SL (2009) Flat-slab subduction and crustal models for the seismically active Sierras Pampeanas region of Argentina. In: Kay S, Ramos VA, Dickinson W (eds) MWR204: backbone of the Americas: shallow subduction, plateau uplift, and ridge and terrane collision. Geological Society of America, Boulder, Colorado, pp 261–278Google Scholar
  3. Anderson M, Alvarado P, Zandt G, Beck S (2007) Geometry and brittle deformation of the subducting Nazca plate, central Chile and Argentina. Geophys J Int 171(1):419–434CrossRefGoogle Scholar
  4. Antinao JL, Gosse J (2009) Large rockslides in the Southern Central Andes of Chile (32–34.5 S): Tectonic control and significance for Quaternary landscape evolution. Geomorphology 104:117–133CrossRefGoogle Scholar
  5. Barazangi M, Isacks BL (1976) Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America. Geology 4:686–692CrossRefGoogle Scholar
  6. Cahill T, Isacks BL (1992) Seismicity and shape of the subducted Nazca plate. J Geophys Res 97(B12):17503–17529CrossRefGoogle Scholar
  7. Casa A, Yamin M, Wright E, Costa C, Coppolecchia M, Cegarra M, Hongn F (eds) (2014) Deformaciones Cuaternarias de la República Argentina, Sistema de Información Geográfica. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino, v2.0 en formato DVD. SIG SEGEMAR: Accesed 30 Aug 2016
  8. Cortés JM, Yamín M, Pasini M (2005) La Precordillera Sur, provincias de Mendoza y San Juan. 16° Congreso Geológico Argentino. Actas 1:395–402. La Plata.Google Scholar
  9. Costa C, Machette M, Dart R, Bastías H, Paredes J, Perucca L, Tello G, Haller K (2000) Map and database of quaternary faults and folds in Argentina: U.S. Geological Survey Open-File Report (00-0108), p 75Google Scholar
  10. Crozier MJ (1984) Field assessment of slope instability. In: Brunsden D, Prior DB (eds) Slope instability. London, Wiley, pp 103–42Google Scholar
  11. Esper Angillieri MY (2011) Inventario de Procesos de Remoción en masa en un sector del Departamento Iglesia, San Juan, Argentina. Revista de la Asociación Geológica Argentina 68(2):225–232Google Scholar
  12. Esper Angillieri MY (2012) Análisis de la vulnerabilidad por flujos en masa en la Provincia de San Juan (Oeste de Argentina). Revista de la Sociedad Geológica de España 25(3–4):145–156Google Scholar
  13. Esper Angillieri MY, Perucca LP (2013) Mass movement in Cordón de las Osamentas, de La Flecha river basin, San Juan, Argentina. Quatern Int 301:150–157CrossRefGoogle Scholar
  14. Esper Angillieri MY, Perucca L, Rothis M, Tapia C, Vargas N (2014) Morphometric characterization and seismogenic sources relationships of a large scale rockslide. Quatern Int 352:92–99CrossRefGoogle Scholar
  15. Esper Angillieri MY (2015) Application of logistic regression and frequency ratio in the spatial distribution of debris-rockslides: Precordillera of San Juan, Argentina. Quatern Int 355:202–208CrossRefGoogle Scholar
  16. Fauqué L, Cortés JM, Folguera A, Etchverría M (2000) Avalanchas de rocas asociadas a neotectónica en el valle del río Mendoza, al sur de Uspallata. Revista Asociación Geológica Argentina 55(4):419–423Google Scholar
  17. Jibson RW, Keefer DK (1993) Analysis of the seismic origin of landslides—examples from the New Madrid seismic zone. Geol Soc Am Bull 105:421–436CrossRefGoogle Scholar
  18. Jibson RW (1996) Use of landslides for paleoseismic analysis. Eng Geol 43(4):291–323CrossRefGoogle Scholar
  19. Jibson RW, Harp EL, Schulz W, Keefer DK (2006) Large rock avalanches triggered by the M 7.9 Denali Fault, Alaska, earthquake of 3 November 2002. Eng Geol 83(1–3):144–160CrossRefGoogle Scholar
  20. Jordan TE, Allmendinger RW, Damanti JF, Drake RE (1993) Chronology of mo-tion in a complete thrust belt: the Precordillera, 30–31°S, Andes Mountains. J Geol 101:135–156CrossRefGoogle Scholar
  21. Keefer DF (1987) Landslides as indicators of prehistoric earthquakes. Directions in paleoseismology. U.S. Geol Surv Open File Rep 87–673:178–180Google Scholar
  22. Keefer DK (1994) The importance of earthquake-induced landslides to long term slope erosion and slope-failure hazards in seismically active regions. Geology 10:265–284Google Scholar
  23. Keefer DK (2000) Statistical analysis of an earthquake-induced landslide distribution: the 1989 Loma Prieta, California event. Eng Geol Amsterdam 58:213–249CrossRefGoogle Scholar
  24. Moreiras SM (2006) Chronology of a Pleistocene rock avalanche probable linked to neotectonic, Cordón del Plata (Central Andes), Mendoza—Argentina. Quat Int 148(1):138–148CrossRefGoogle Scholar
  25. Moreiras SM, Sepúlveda SA (2009) Large paleolandslides in the Central Andes (32–33°S): new challenges. In: Proceedings XII Congreso Geológico Chileno, Santiago, paper S3_022Google Scholar
  26. Moreiras SM, Coronato A (2010) Landslide processes in Argentina. Natural hazards and Human-Exacerbated Disasters in Latin-America. Geomorphol: Dev Earth Surf Process 301–331Google Scholar
  27. Moreiras SM, Hermanns RL, Fauqué L (2015) Cosmogenic dating of rock avalanches constraining Quaternary stratigraphy and regional neotectonics in the Argentine Central Andes (32° S). Quat Sci Rev 112(15):45–58CrossRefGoogle Scholar
  28. Moreiras SM, Sepúlveda SA (2015) Megalandslides in the Andes of Central Chile and Argentina (32°–34°S) and potential hazards. Geodynamic Processes in the Andes of Central Chile and Argentina. Geol Soci London 399:329–344CrossRefGoogle Scholar
  29. Pantano Zuñiga AV (2014) Geomorfología, neotectónica y la peligrosidad geológica en la cuenca del Río Acequión, provincia de San Juan, Argentina. Tesis Doctoral. Facultad de Ciencias Naturales e I.M.L. Universidad Nacional de TucumánGoogle Scholar
  30. Perucca LP, Moreiras SM (2008) Indicative structures of paleo-seismicity in the Acequión region, San Juan province, Argentina. Geodinamica Acta 21(3):93–105CrossRefGoogle Scholar
  31. Perucca LP, Esper Angillieri MY (2008) La avalancha de rocas Las Majaditas. Caracterización geométrica y posible relación con eventos paleosísmicos. Precordillera de San Juan, Argentina. Revista Española de la Sociedad Geológica de España 21(1–2):35–47Google Scholar
  32. Perucca LP, Esper Angillieri MY (2009a) El deslizamiento de rocas y detritos sobre el río Santa Cruz y el aluvión resultante por el colapso del dique natural, Andes Centrales de San Juan. Revista de la Asociación Geológica Argentina 65(3):571–585Google Scholar
  33. Perucca LP, Esper Angillieri MY (2009b) Evolution of a debris-rock slide causing a natural dam: the flash flood of Río Santa Cruz, Province of San Juan. November 12, 2005. Nat Hazards 50(2):305–320CrossRefGoogle Scholar
  34. Quartino BJ, Zardini RA, Amos AJ (1971) Estudio y exploración geológica de la región Barreal—Calingasta (provincia de San Juan). Asociación Geológica Argentina, Monografía 1, Buenos Aires, p 184Google Scholar
  35. Smalley RF Jr, Pujol J, Regnier M, Chiu JM, Chatelain JL, Isacks BL, Araujo M, Puebla N (1993) Basement seismicity beneath the Andean. Precordillera thin skinned thrust belt and implications for crustal and lithospheric behavior. Tectonics 12:63–76CrossRefGoogle Scholar
  36. USGS. ASTER global digital elevation Map V2. Accesed 30 Aug 2016
  37. Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Special Report 176: Landslides: Analysis and control. Transportation and Road Research Board, National Academy of Science, Washington DC., pp 11–33Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sebastián Junquera Torrado
    • 1
  • Stella Maris Moreiras
    • 2
    Email author
  • Sergio A. Sepúlveda
    • 3
    • 4
  1. 1.CONICET—IANIGLA (CCT)Parque Gral San Martín MendozaArgentina
  2. 2.Fac. Ciencias Agrarias, Geomorphology GroupIANIGLA–CONICET, Universidad Nacional de CuyoMendozaArgentina
  3. 3.Departamento de GeologíaUniversidad de ChileSantiagoChile
  4. 4.Instituto de Ciencias de la IngenieríaUniversidad de O´HigginsRancaguaChile

Personalised recommendations