Advertisement

Improved Search Mechanisms for the Fish School Search Algorithm

  • João Batista Monteiro Filho
  • Isabela Maria Carneiro AlbuquerqueEmail author
  • Fernando Buarque Lima Neto
  • Filipe Vieira Silva Ferreira
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 557)

Abstract

In this work we introduce two new mechanisms for the Fish School Search algorithm in order to improve the search ability of its original and niching versions. Two modifications in the usual operators are proposed aiming to increase weight parameters reliability and also to include elitist behavior. Five benchmark optimization problems were employed to evaluate the effectiveness of the modifications proposed. We analyze the convergence curves and also the minimum mean fitness obtained by each version. The results show that the proposed mechanisms improved the convergence of the niching version of the Fish School Search algorithm.

Keywords

Fish school search Metaheuristics Swarm intelligence Optimization 

References

  1. 1.
    Glover, F.W., Kochenberger, G.A.: Handbook of Metaheuristics, vol. 57. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  2. 2.
    Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–72 (1992)CrossRefGoogle Scholar
  3. 3.
    Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, New York, vol. 1, pp. 39–43 (1995)Google Scholar
  4. 4.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 26(1), 29–41 (1996)CrossRefGoogle Scholar
  5. 5.
    Filho, C.J.A.B., De Lima Neto, F.B., Lins, A.J.C.C., Nascimento, A.I.S., Lima, M.P.: A novel search algorithm based on fish school behavior. In: Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, pp. 2646–2651 (2008)Google Scholar
  6. 6.
    Bastos-Filho, C.J.A., Guimarães, A.C.S.: Multi-objective fish school search. Int. J. Swarm Intell. Res. 6(1), 23–40 (2015)CrossRefGoogle Scholar
  7. 7.
    Madeiro, S.S., de Lima-Neto, F.B., Bastos-Filho, C.J.A., Nascimento Figueiredo, E.M.: Density as the segregation mechanism in fish school search for multimodal optimization problems. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds.) ICSI 2011. LNCS, vol. 6729, pp. 563–572. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21524-7_69 CrossRefGoogle Scholar
  8. 8.
    Sargo, J.A.G., Vieira, S.M., Sousa, J.M.C., Bastos-Filho, C.J.A: Binary fish school Search applied to feature selection: Application to ICU readmissions. In: IEEE International Conference on Fuzzy Systems, pp. 1366–1373 (2014)Google Scholar
  9. 9.
    De Lima-Neto, F.B., Pereira, G., de Lacerda, M.: Weight based fish school search. In: 2014 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 270–277. IEEE (2014)Google Scholar
  10. 10.
    Monteiro, J.B., Albuquerque, I.M.C., De Lima-Neto, F.B., Ferreira, F.V.S.: Optimizing multi-plateau functions with FSS-SAR (stagnation avoidance routine). In: IEEE-Symposium Series on Computational Intelligence (2016)Google Scholar
  11. 11.
    Albuquerque, I.M.C., Monteiro, J.B., De Lima-Neto, F.B., Oliveira, A.M.: Solving assembly line balancing problems with fish school search algorithm. In: IEEE-Symposium Series on Computational Intelligence (2016)Google Scholar
  12. 12.
    Hicks, C.R.: Fundamental Concepts in the Design of Experiments. Holt, Rinehart and Winston, New York (1963)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • João Batista Monteiro Filho
    • 1
  • Isabela Maria Carneiro Albuquerque
    • 1
    Email author
  • Fernando Buarque Lima Neto
    • 1
  • Filipe Vieira Silva Ferreira
    • 1
  1. 1.Department of Computer EngineeringPolytechnical School of PernambucoRecifeBrazil

Personalised recommendations