Detecting Double H.264 Compression Based on Analyzing Prediction Residual Distribution

  • S. Chen
  • T. F. Sun
  • X. H. JiangEmail author
  • P. S. He
  • S. L. Wang
  • Y. Q. Shi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10082)


Detecting double video compression has become an important issue in video forensics. A novel double H.264 compression detection scheme based on Prediction Residual Distribution (PRED) analysis is proposed in the paper. The proposed scheme can be applied to detect double H.264 compression with non-aligned GOP structures. For each frame of a given video, the prediction residual is first calculated and the average value of the prediction residual in each non-overlapping 4 × 4 block is recorded to reduce the influence of the noise. Then the PRED feature is represented by the distribution of the average prediction residual in each frames. After that, the Jensen-Shannon Divergence (JSD) is introduced to measure the difference between the PRED features of adjacent two frames. Finally, a Periodic Analysis (PA) method is applied to the final feature sequence to detect double H.264 compression and to estimate the first GOP size. Fourteen public YUV sequences are adopted for evaluation. Experiments have demonstrated that the proposed scheme can achieve better performance than the state-of-the-art method investigated.


Double compression detection Prediction residual distribution Non-aligned GOP structure First GOP estimation 



This work was supported by the National Natural Science Foundation of China (Nos. 61572320, 61572321, 61272249, 61272439, 61271319). Corresponding author is X.H. Jiang, any comments should be addressed to


  1. 1.
    Milani, S., Fontani, M., Bestagini, P., Barni, M., Piva, A., Tagliasacchi, M., Tubaro, S.: An overview on video forensics. APSIPA Trans. Sig. Inf. Process. 1, e2 (2012)Google Scholar
  2. 2.
    Wang, W., Farid, H.: Exposing digital forgeries in video by detecting double quantization. In: Proceedings of the 11th ACM Workshop on Multimedia and Security, pp. 39–48. ACM (2009)Google Scholar
  3. 3.
    Su, Y., Xu, J.: Detection of double-compression in MPEG-2 videos. In: 2010 2nd International Workshop on Intelligent Systems and Applications (ISA), pp. 1–4. IEEE (2010)Google Scholar
  4. 4.
    Xu, J., Su, Y., Liu, Q.:Detection of double MPEG-2 compression based on distributions of DCT coefficients. Int. J. Pattern Recogn. Artif. Intell. 27(01)Google Scholar
  5. 5.
    Chen, W., Shi, Y.Q.: Detection of double MPEG compression based on first digit statistics. In: Kim, H.-J., Katzenbeisser, S., Ho, Anthony, T.,S. (eds.) IWDW 2008. LNCS, vol. 5450, pp. 16–30. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04438-0_2 CrossRefGoogle Scholar
  6. 6.
    Sun, T., Wang, W., Jiang, X.: Exposing video forgeries by detecting MPEG double compression. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1389–1392. IEEE (2012)Google Scholar
  7. 7.
    Jiang, X., Wang, W., Sun, T., Shi, Y.Q., Wang, S.: Detection of double compression in MPEG-4 videos based on Markov statistics. IEEE Signal Process. Lett. 20(5), 447–450 (2013)CrossRefGoogle Scholar
  8. 8.
    Ravi, H., Subramanyam, A., Gupta, G., Kumar, B.A.: Compression noise based video forgery detection. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 5352–5356. IEEE (2014)Google Scholar
  9. 9.
    Subramanyam, A., Emmanuel, S.: Pixel estimation based video forgery detection. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3038–3042. IEEE (2013)Google Scholar
  10. 10.
    Liao, D., Yang, R., Liu, H., Li, J., Huang, J.: Double H.264/AVC compression detection using quantized nonzero AC coefficients. In: IS&T/SPIE Electronic Imaging, International Society for Optics and Photonics, p. 78800Q (2011)Google Scholar
  11. 11.
    Huang, Z., Huang, F., Huang, J.: Detection of double compression with the same bit rate in MPEG-2 videos. In: 2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP), pp. 306–309. IEEE (2014)Google Scholar
  12. 12.
    Wang, W., Farid, H.: Exposing digital forgeries in video by detecting double MPEG compression. In: Proceedings of the 8th Workshop on Multimedia and Security, pp. 37–47. ACM (2006)Google Scholar
  13. 13.
    Qin, Y.-I., Sun, G.-I., Wang, S.-Z., Zhang, X.-P.: Blind detection of video sequence montage based on GOP abnormality. Act Electron. Sin. 38(7), 1597–1602 (2010)Google Scholar
  14. 14.
    Stamm, M.C., Lin, W.S., Liu, K.R.: Temporal forensics and anti-forensics for motion compensated video. IEEE Trans. Inf. Forensics Secur. 7(4), 1315–1329 (2012)CrossRefGoogle Scholar
  15. 15.
    He, P., Jiang, X., Sun, T., Wang, S.: Double compression detection based on local motion vector field analysis in static-background videos. J. Vis. Commun. Image Represent. 35, 55–66 (2016)CrossRefGoogle Scholar
  16. 16.
    Vázquez-Padín, D., Fontani, M., Bianchi, T., Comesana, P., Piva, A., Barni, M.: Detection of video double encoding with GOP size estimation. In: IEEE International Workshop on Information Forensics and Security (WIFS) (2012)Google Scholar
  17. 17.
    Luo, W., Wu, M., Huang, J.: MPEG recompression detection based on block artifacts. In: Electronic Imaging 2008, International Society for Optics and Photonics, p. 68190X (2008)Google Scholar
  18. 18.
    He, P., Sun, T., Jiang, X., Wang, S.: Double compression detection in MPEG-4 videos based on block artifact measurement with variation of prediction footprint. In: Huang, D.-S., Han, K. (eds.) ICIC 2015. LNCS (LNAI), vol. 9227, pp. 787–793. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-22053-6_84 CrossRefGoogle Scholar
  19. 19.
    Liu, H., Li, S., Bian, S.: Detecting frame deletion in H.264 video. In: Huang, X., Zhou, J. (eds.) ISPEC 2014. LNCS, vol. 8434, pp. 262–270. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-06320-1_20 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • S. Chen
    • 1
  • T. F. Sun
    • 1
  • X. H. Jiang
    • 1
    Email author
  • P. S. He
    • 1
  • S. L. Wang
    • 1
  • Y. Q. Shi
    • 2
  1. 1.EIEEShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.ECENew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations