Advertisement

Deep Learning on Spatial Rich Model for Steganalysis

  • Xiaoyu Xu
  • Yifeng SunEmail author
  • Guangming Tang
  • Shiyuan Chen
  • Jian Zhao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10082)

Abstract

Recent studies have indicated that deep learning for steganalysis may be a tendency in future. The paper novelly proposes a faeture-based deep learning classifier for steganalysis. Analysis shows SRM features are suitable to be the input of deep learning. On this basis, a modified convolutional neural network (CNN) is designed for detection. In the initial layers, taking the thought of ensemble classifier for reference, we extract L subspaces of the entire SRM feature space, and process each subspace respectively. In the deeper layers, two different structures are designed. One is complex in structure and hard to train, but achieve better detection accuracy; the other is simple in structure and easy to train, but the achieved detection accuracy is a little worse. Experiments show that the proposed method achieves comparable performance on BOSSbase compared to GNCNN and ensemble classifier with SRM features.

Keywords

Deep learning Steganalysis CNN RandomData 

References

  1. 1.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRefGoogle Scholar
  2. 2.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  3. 3.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  4. 4.
    Ouyang, W., Wang, X., Zeng, X., Qiu, S., Luo, P., Tian, Y., Tang, X.: Deformable deep convolutional neural networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2403–2412 (2015)Google Scholar
  5. 5.
    Zou, D., Shi, Y. Q., Su, W., Xuan, G.: Steganalysis based on Markov model of thresholded prediction-error image. In: 2006 IEEE International Conference on Multimedia and Expo, pp. 1365–1368. IEEE, July 2006Google Scholar
  6. 6.
    Shi, Y.Q., Sutthiwan, P., Chen, L.: Textural features for steganalysis. In: Kirchner, M., Ghosal, D. (eds.) IH 2012. LNCS, vol. 7692, pp. 63–77. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36373-3_5 CrossRefGoogle Scholar
  7. 7.
    Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)CrossRefGoogle Scholar
  8. 8.
    Pevny, T., Bas, P., Fridrich, J.: Steganalysis by subtractive pixel adjacency matrix. IEEE Trans. Inf. Forensics Secur. 5(2), 215–224 (2010)CrossRefGoogle Scholar
  9. 9.
    Holub, V., Fridrich, J.: Random projections of residuals for digital image steganalysis. IEEE Trans. Inf. Forensics Secur. 8(12), 1996–2006 (2013)CrossRefGoogle Scholar
  10. 10.
    Chen, L., Shi, Y.-Q., Sutthiwan, P.: Variable multi-dimensional co-occurrence for steganalysis. In: Shi, Y.-Q., Kim, H.J., Pérez-González, F., Yang, C.-N. (eds.) IWDW 2014. LNCS, vol. 9023, pp. 559–573. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-19321-2_43 CrossRefGoogle Scholar
  11. 11.
    Tan, S., Li, B.: Stacked convolutional auto-encoders for steganalysis of digital images. In: 2014 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), pp. 1–4. IEEE, December 2014Google Scholar
  12. 12.
    Qian, Y., Dong, J., Wang, W., Tan, T.: Deep learning for steganalysis via convolutional neural networks. In: International Society for Optics and Photonics SPIE/IS & T Electronic Imaging, p. 94090J, March 2015Google Scholar
  13. 13.
    Pibre, L., Jérôme, P., Ienco, D., Chaumont, M.: Deep learning is a good steganalysis tool when embedding key is reused for different images, even if there is a cover source-mismatch. In EI: Electronic Imaging, February 2016Google Scholar
  14. 14.
    Xu, G., Wu, H.Z., Shi, Y.Q.: Structural design of convolutional neural networks for steganalysis. IEEE Sig. Process. Lett. 23(5), 708–712 (2016)CrossRefGoogle Scholar
  15. 15.
    Ker, A.D., Böhme, R.: Revisiting weighted stego-image steganalysis. In: Electronic Imaging 2008, p. 681905. International Society for Optics and Photonics, February 2008Google Scholar
  16. 16.
    Holub, V., Fridrich, J.: Digital image steganography using universal distortion. In: Proceedings of 1st ACM Workshop on Information Hiding and Multimedia Security, Montpellier, France, p. 59. C68, June 2013Google Scholar
  17. 17.
    Li, B., Wang, M., Huang, J., Li, X.: A new cost function for spatial image steganography. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 4206–4210. IEEE, October 2014Google Scholar
  18. 18.
    Kodovsky, J., Fridrich, J., Holub, V.: Ensemble classifiers for steganalysis of digital media. IEEE Trans. Inf. Forensics Secur. 7(2), 432–444 (2012)CrossRefGoogle Scholar
  19. 19.
    Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pp. 807–814 (2010)Google Scholar
  20. 20.
    Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012)
  21. 21.
    Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678. ACM, November 2014Google Scholar
  22. 22.
    Bas, P., Filler, T., Pevný, T.: Break our steganographic system: the Ins and Outs of organizing BOSS. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 59–70. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24178-9_5 CrossRefGoogle Scholar
  23. 23.
    Denemark, T., Sedighi, V., Holub, V., Cogranne, R., Fridrich, J.: Selection-channel-aware rich model for steganalysis of digital images. In: 2014 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 48–53. IEEE, December 2014Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Xiaoyu Xu
    • 1
  • Yifeng Sun
    • 1
    Email author
  • Guangming Tang
    • 1
  • Shiyuan Chen
    • 1
  • Jian Zhao
    • 1
  1. 1.Institute of Information Science and TechnologyZhengzhouChina

Personalised recommendations