Skip to main content

Reliable Pooled Steganalysis Using Fine-Grained Parameter Estimation and Hypothesis Testing

  • Conference paper
  • First Online:
Digital Forensics and Watermarking (IWDW 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10082))

Included in the following conference series:

  • 1785 Accesses

Abstract

Despite the state-of-the-art steganalysis can detect highly undetectable steganography, it is too unreliable to implement in the real world due to its false alarm rate. In pooled steganalysis scenario, multiple objects are intercepted and a reliable collective decision is required. To control the reliability, the confidence intervals of the detectors’ false rates are estimated as a parameter and hypothesis testing technology is used to determine the threshold of stego rates. In view of the fact that the false rate is vulnerable to some image properties (e.g. image size, and texture complexity), we propose a novel fine-grained scheme where test sets are divided by its texture measure in both parameter estimation and hypothesis testing processes. The demonstration on public image sets shows the proposed scheme achieves higher reliability in most cases. It confirms that the priori knowledge of image properties is conductive to a accurate threshold and reliable decision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pevný, T., Filler, T., Bas, P.: Using high-dimensional image models to perform highly undetectable steganography. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) IH 2010. LNCS, vol. 6387, pp. 161–177. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16435-4_13

    Chapter  Google Scholar 

  2. Holub, V., Fridrich, J.: Designing steganographic distortion using directional filters. In: IEEE Int’l Workshop on Information Forensics and Security (WIFS 2012), pp. 234–239. IEEE Press, New York (2012)

    Google Scholar 

  3. Holub, V., Fridrich, J.: Digital image steganography using universal distortion. In: ACM IH&MMSec 2013, pp. 59–68. ACM, New York (2013)

    Google Scholar 

  4. Pevný, T., Bas, P., Fridrich, J.: Steganalysis by subtractive pixel adjacency matrix. IEEE Trans. Inf. Forensics Secur. 5(2), 215–224 (2010)

    Article  Google Scholar 

  5. Denemark, T., Sedighi, V., Holub, V., Cogranne, R., Fridrich, J.: Selection-channel-aware rich model for steganalysis of digital images. In: IEEE WIFS 2014, pp. 48–53. IEEE Press, New York (2014)

    Google Scholar 

  6. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2001)

    Article  Google Scholar 

  7. Cogranne, R., Sedighi, V., Fridrich, J., Pevný, T.: Is ensemble classifier needed for steganalysis in high-dimensional feature spaces?. In: IEEE WIFS 2015, pp. 1–6. IEEE Press, New York (2015)

    Google Scholar 

  8. Ker, A.D.: Batch steganography and pooled steganalysis. In: Camenisch, J.L., Collberg, C.S., Johnson, N.F., Sallee, P. (eds.) IH 2006. LNCS, vol. 4437, pp. 265–281. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74124-4_18

    Chapter  Google Scholar 

  9. Pevný, T., Ker, A.D.: Towards dependable steganalysis. In: Proceedings of Media Watermarking, Security, and Forensics 2015. SPIE, vol. 9409, pp. 94090I–94090I (2015)

    Google Scholar 

  10. Ker, A.D.: Perturbation hiding and the batch steganography problem. In: Solanki, K., Sullivan, K., Madhow, U. (eds.) IH 2008. LNCS, vol. 5284, pp. 45–59. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88961-8_4

    Chapter  Google Scholar 

  11. Böhme, R.: Assessment of steganalytic methods using multiple regression models. In: Barni, M., Herrera-Joancomartí, J., Katzenbeisser, S., Pérez-González, F. (eds.) IH 2005. LNCS, vol. 3727, pp. 278–295. Springer, Heidelberg (2005). doi:10.1007/11558859_21

    Chapter  Google Scholar 

  12. Huang, W., Zhao, X.: Novel cover selection criterion for spatial steganography using linear pixel prediction error. Sci. Chin. Inf. Sci. 59(5), 05910301–05910303 (2016)

    Google Scholar 

  13. Ker, A.D.: Batch steganography and the threshold game. In: Proceedings of the International Society for Optical Engineering. SPIE, vol. 6505, pp. 650504–650504 (2007)

    Google Scholar 

  14. Pevný, T., Fridrich, J.: Multiclass detector of current steganographic methods for JPEG format. IEEE Trans. Inf. Forensics Secur. 3(4), 635–650 (2008)

    Article  Google Scholar 

  15. Ker, A.D., Bas, P., Böhme, R., Cogranne, R., Craver, S., Filler, T., Fridrich, J., Pevný, T.: Moving steganography and steganalysis from the laboratory into the real world. In: First ACM Workshop on Information Hiding & Multimedia Security (IH&MMSec 2013), pp. 45–58 (2013)

    Google Scholar 

  16. Dabeer, O., Sullivan, K., Madhow, U., Chandrasekaran, S.: Detection of hiding in the least significant bit. IEEE Trans. Sig. Proc. 52(10), 3046–3058 (2004)

    Article  MathSciNet  Google Scholar 

  17. Qiao, T., Retraint, F., Cogranne, R., Zitzmann, C.: Steganalysis of JSteg algorithm using hypothesis testing theory. EURASIP J. Inf. Secur. 1, 1–16 (2015)

    Google Scholar 

  18. Cachin, C.: An information-theoretic model for steganography. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 306–318. Springer, Heidelberg (1998). doi:10.1007/3-540-49380-8_21

    Chapter  Google Scholar 

  19. Cogranne, R., Fridrich, J.: Modeling and extending the ensemble classifier for steganalysis of digital images using hypothesis testing theory. IEEE Trans. Inf. Forensics Secur. 10(12), 2627–2642 (2015)

    Article  Google Scholar 

  20. Clopper, C.J., Pearson, E.S.: The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26(4), 404–413 (1934)

    Article  MATH  Google Scholar 

  21. Brown, L.D., Cai, T.T., DasGupta, A.: Interval estimation for a binomial proportion. Stat. Sci. 16(2), 101–117 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Highleyman, W.H.: The design and analysis of pattern recognition experiments. Bell Syst. Tech. J. 41(2), 723–744 (1962)

    Article  Google Scholar 

  23. Bas, P., Filler, T., Pevný, T.: “Break our steganographic system”: the ins and outs of organizing BOSS. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 59–70. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24178-9_5

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 61402390), the National Key Technology R&D Program (Grant No. 2014BAH41B01), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA06030600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Huang, W., Zhao, X. (2017). Reliable Pooled Steganalysis Using Fine-Grained Parameter Estimation and Hypothesis Testing. In: Shi, Y., Kim, H., Perez-Gonzalez, F., Liu, F. (eds) Digital Forensics and Watermarking. IWDW 2016. Lecture Notes in Computer Science(), vol 10082. Springer, Cham. https://doi.org/10.1007/978-3-319-53465-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53465-7_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53464-0

  • Online ISBN: 978-3-319-53465-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics