Reversible 3D Image Data Hiding with Quality Enhancement

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10082)

Abstract

The 3D image constructed by a texture image plus a depth map is popular for stereo representation. When embedding data in the depth map, conventional reversible data hiding algorithms, which are designed for gray and color images, are not suitable. In this paper, we propose a novel reversible data hiding method in the depth map for quality enhancement. By optimizing the selection of prediction error and embedding data with the help of depth no-synthesis-error model (D-NOSE), the proposed scheme can embed more data with less distortion. The hidden data are the compressed residual error between the actual view and the virtual view. The watermarked depth map can directly be used to synthesis a same virtual view as in depth-image-based rendering (DIBR). After extracting the hidden data, a higher quality virtual view can be obtained by adding the residual error to the synthesized virtual view. Experimental results show that the virtual view with higher quality is obtained, and higher embedding capacity is achieved as well.

Keywords

Reversible data hiding Depth map D-NOSE model Optimal selection Quality enhancement 

Notes

Acknowledgments

This work was supported in part by National NSF of China (61332012, 61272355, 61672090), Fundamental Research Funds for the Central Universities (2015JBZ002), the PAPD, the CICAEET.

References

  1. 1.
    Tian, J.: Reversible data embedding using a difference expansion. IEEE Trans. Circuits Syst. Video Technol. 13(8), 890–896 (2003)CrossRefGoogle Scholar
  2. 2.
    Alattar, A.M.: Reversible watermark using difference expansion of a generalized integer transform. IEEE Trans. Image Process 13(8), 1147–1156 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chang, C.C., Lu, T.C.: A difference expansion oriented data hiding scheme for restoring the original host images. J. Syst. Softw. 79(12), 1754–1766 (2006)CrossRefGoogle Scholar
  4. 4.
    Tai, W.L., Yeh, C.M., Chang, C.C.: Reversible data hiding based on histogram modification of pixel differences. IEEE Trans. Circuits Syst. Video Technol. 19(6), 906–910 (2009)CrossRefGoogle Scholar
  5. 5.
    Li, X., Zhang, W., Gui, X., Yang, B.: A novel reversible data hiding scheme based on two-dimensional difference-histogram modification. IEEE Trans. Inf. Forensics Secur. 8(7), 1091–1100 (2013)CrossRefGoogle Scholar
  6. 6.
    Ni, Z., Shi, Y.Q., Ansari, N., Su, W.: Reversible data hiding. IEEE Trans. Circuits Syst. Video Technol. 16(3), 354–362 (2006)CrossRefGoogle Scholar
  7. 7.
    Luo, L., Chen, Z., Chen, M., Zeng, X., Xiong, Z.: Reversible image watermarking using interpolation technique. IEEE Trans. Inf. Forensics Secur. 5(1), 187–193 (2010)CrossRefGoogle Scholar
  8. 8.
    Li, X., Li, B., Yang, B., Zeng, T.: General framework to histogram-shifting-based reversible data hiding. IEEE Trans. Image Process. 22(6), 2181–2191 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Thodi, D.M., Rodriguez, J.J.: Expansion embedding techniques for reversible watermarking. IEEE Trans. Image Process. 16(3), 721–730 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Sachnev, V., Kim, H.J., Nam, J., Suresh, S., Shi, Y.Q.: Reversible watermarking algorithm using sorting and prediction. IEEE Trans. Circuits Syst. Video Technol. 19(7), 989–999 (2009)CrossRefGoogle Scholar
  11. 11.
    Ou, B., Li, X., Zhao, Y., Ni, R., Shi, Y.Q.: Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans. Image Process. 22(12), 5010–5021 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Li, X., Zhang, W., Gui, X., Yang, B.: Efficient reversible data hiding based on multiple histograms modification. IEEE Trans. Inf. Forensics Secur. 10(9), 2016–2027 (2015)CrossRefGoogle Scholar
  13. 13.
    Coltuc, D.: On stereo embedding by reversible watermarking. In: Proceedings International Symposium on Signals, Circuits and Systems, pp. 93–96 (2007)Google Scholar
  14. 14.
    Coltuc, D., Caciula, I.: Stereo embedding by reversible watermarking: further results. In: Proceedings International Symposium on Signals, Circuits and Systems, pp. 1–4 (2009)Google Scholar
  15. 15.
    Ellinas, J.N.: Reversible watermarking on stereo image sequences. Int. J. Sig. Process. 5(3), 210–215 (2009)Google Scholar
  16. 16.
    Chen, H., Zhu, Y.: An effective stereo image coding method with reversible water-marking. J. Comput. Inf. Syst. 8(7), 2761–2768 (2012)Google Scholar
  17. 17.
    Tong, X., Shen, G., Xuan, G., Li, S., Yang, Z., Li, J., Shi, Y.-Q.: Stereo image coding with histogram-pair based reversible data hiding. In: Shi, Y.-Q., Kim, H.J., Pérez-González, F., Yang, C.-N. (eds.) IWDW 2014. LNCS, vol. 9023, pp. 201–214. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-19321-2_15 CrossRefGoogle Scholar
  18. 18.
    Khan, A., Malik, S.A., Ali, A.: Intelligent reversible watermarking and authentication: hiding depth map information for 3D cameras. Inf. Sci. 216, 155–175 (2012)CrossRefGoogle Scholar
  19. 19.
    Chung, K.L., Yang, W.J., Yang, W.N.: Reversible data hiding for depth maps using the depth no-synthesis-error model. Inf. Sci. 269, 159–175 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Zhao, Y., Zhu, C., Chen, Z., Yu, I.: Depth no-synthesis-error model for view synthesis in 3-D video. IEEE Trans. Image Process. 20(8), 2221–2228 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Fehn, C.: Depth-Image-Based Rendering (DIBR), compression, and transmission for a new approach on 3D-TV. In: International Society for Optics and Photonics, pp. 93–104 (2004)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Information Science and Beijing Key Laboratory of Advanced Information Science and Network TechnologyBeijing Jiaotong UniversityBeijingChina

Personalised recommendations