Second Order Perdicting-Error Sorting for Reversible Data Hiding

  • Jiajia Xu
  • Hang Zhou
  • Weiming Zhang
  • Ruiqi Jiang
  • Guoli Ma
  • Nenghai Yu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10082)

Abstract

Reversible data hiding (RDH) schemes compete against each other for a sharply distributed prediction error histogram, which is often realized by utilizing prediction strategies together with sorting techniques. The sorting technique aims to estimate the local context complexity for each pixel to optimize the embedding order. In this paper, we propose a novel second order perdicting and sorting technique for reversible data hiding. Firstly, the prediction error is obtained by an interchannel secondary prediction using the prediction errors of current channel and reference channel. Experiments show that this prediction method can produce a shaper second order prediction-error histogram. Then, we will introduce a novel second order perdicting-error sorting (SOPS) algorithm, which make full use of the feature of the edge information obtained from another color channel and high correlation between adjacent pixels. So it will reflect the texture complexity of current pixel better. Experimental results demonstrate that our proposed method outperforms the previous state-of-arts counterparts significantly in terms of both the prediction accuracy and the overall embedding performance.

Keywords

Reversible data hiding Channel correlation Second order perdicting-error 

References

  1. 1.
    Tian, J.: Reversible data embedding using a difference expansion. IEEE Trans. Circ. Syst. Video Technol. 13(8), 890–896 (2003)CrossRefGoogle Scholar
  2. 2.
    Fridrich, J., Goljan, M.: Lossless data embedding for all image formats. Proc. SPIE 4675, 572–583 (2002)CrossRefGoogle Scholar
  3. 3.
    Dragoi, C., Coltuc, D.: Gradient based prediction for reversible watermarking by difference expansion. In: IH&MMSec 2014, pp. 35–41, June 2014Google Scholar
  4. 4.
    Rad, R.M., Attar, A.: A predictive algorithm for multimedia data compression. Multimedia Syst. 19(2), 103–115 (2013)CrossRefGoogle Scholar
  5. 5.
    Ni, Z., Shi, Y., Ansari, N., Wei, S.: Reversible data hiding. IEEE Trans. Circ. Syst. Video Technol. 16(3), 354–362 (2006)CrossRefGoogle Scholar
  6. 6.
    Afsharizadeh, M., Mohammadi, M.: A reversible watermarking prediction based scheme using a new sorting and technique. In: 10th International Conference on Information Security and Cryptology (ISC), pp. 98–104 (2013)Google Scholar
  7. 7.
    Kamstra, L.H.J., Heijmans, A.M.: Reversible data embedding into images using wavelet techniques and sorting. IEEE Trans. Image Process. 14(12), 2082–2090 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Zhang, W., Chen, B., Yu, N.: Improving various reversible data hiding schemes via optimal codes for binary covers. IEEE Trans. Image Process. 21(6), 2991–3003 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Nikolaidis, A.: Low overhead reversible data hiding for color JPEG images. Multimedia Tools Appl. 75(4), 1869–1881 (2016)CrossRefGoogle Scholar
  10. 10.
    Tseng, Y., Pan, H.: Data hiding in 2-color images. IEEE Trans. Comput. 51(7), 873–880 (2002)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Li, J., Li, X., Yang, B.: Reversible data hiding scheme for color image based on prediction-error expansion and cross-channel correlation. Sig. Process. 93(9), 2748–2758 (2013)CrossRefGoogle Scholar
  12. 12.
    Li, J., Li, X., Yang, B.: PEE-based reversible watermarking for color image. In: International Conference on Image Processing (2012)Google Scholar
  13. 13.
    Sachnev, V., Kim, H.J., Nam, J., Suresh, S., Shi, Y.: Reversible watermarking algorithm using sorting and prediction. IEEE Trans. Circ. Syst. Video Technol. 19(7), 989–999 (2009)CrossRefGoogle Scholar
  14. 14.
    Alattar, A.M.: Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans. Image Process. 13(8), 1147–1156 (2004)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hu, Y., Lee, H., Li, J.: DE-based reversible data hiding with improved overflow location map. IEEE Trans. Circ. Syst. Video Technol. 19(2), 250–260 (2009)CrossRefGoogle Scholar
  16. 16.
    Yang, H., Hwang, K.: Reversible data hiding for color BMP image based on block difference histogram. In: Proceedings of the Fourth International Conference on UBI-Media Computing (U-Media), pp. 257–260 (2011)Google Scholar
  17. 17.
    Lee, S., Yoo, C.D., Kalker, T.: Reversible image watermarking based on integer-to-integer wavelet transform. IEEE Trans. Inf. Forensics Secur. 2(3), 321–330 (2007)CrossRefGoogle Scholar
  18. 18.
    Thodi, D.M., Rodriguez, J.J.: Expansion embedding techniques for reversible watermarking. IEEE Trans. Image Process. 16(3), 721–730 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Li, X., Yang, B., Zeng, T.: Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Trans. Image Process. 20(12), 3524–3533 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Coltuc, D.: Low distortion transform for reversible watermarking. IEEE Trans. Image Process. 21(1), 412–417 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Giller, G.: A generalized error distribution. SSRN, 16 August 2005. http://dx.doi.org/10.2139/ssrn.2265027
  22. 22.
    Dragoi, C., Coltuc, D.: Improved rhombus interpolation for reversible watermarking by difference expansion. In: Proceedings of EUSIPCO, pp. 1688–1692 (2012)Google Scholar
  23. 23.
    Wu, H.-T., Huang, J.: Reversible image watermarking on prediction errors by efficient histogram modification. Sig. Process. 92(12), 3000–3009 (2012)CrossRefGoogle Scholar
  24. 24.
    Qin, C., Chang, C.-C., Huang, Y.-H., Liao, L.-T.: An inpaintingassisted reversible steganographic scheme using histogram shifting mechanism. IEEE Trans. Circ. Syst. Video Technol. 23(7), 1109–1118 (2013)CrossRefGoogle Scholar
  25. 25.
    Zhang, W., Hu, X., Li, X., Yu, N.: Recursive histogram modification: establishing equivalency between reversible data hiding and lossless data compression. IEEE Trans. Image Process. 22(7), 2775–2785 (2013)CrossRefGoogle Scholar
  26. 26.
    Zhang, W., Chen, B., Yu, N.: Capacity-approaching codes for reversible data hiding. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 255–269. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24178-9_18 CrossRefGoogle Scholar
  27. 27.
    Schaefer, G., Stich, M.: UCID: an uncompressed colour image database. In: Proceedings of the SPIE Storage and Retrieval Methods and Applications for Multimedia, San Jose, CA, USA, pp. 472–480 (2004)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jiajia Xu
    • 1
  • Hang Zhou
    • 1
  • Weiming Zhang
    • 1
  • Ruiqi Jiang
    • 1
  • Guoli Ma
    • 1
  • Nenghai Yu
    • 1
  1. 1.University of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations