Advertisement

Follicular Fluid Hormone Profiles in Natural Cycle IVF Patients During Follicular Phase

  • N. Ellissa Baskind
  • Vinay SharmaEmail author
Chapter

Abstract

The follicular milieu contains multiple hormones secreted by the follicular somatic cells and is termed the follicular fluid (FF). This environment impacts oocyte maturation and ultimate viability together with various additional mediators such as cytokines and growth factors that are also under the influence of the hormones. Their relative concentrations are intricately in balance, and disruption either secondary to endocrine pathology or administration of exogenous gonadotrophins may impart deleterious effects on the developmental potential of the ensuing oocyte and embryo. Following controlled ovarian hyperstimulation (COH), elevated oestradiol (E2) and progesterone (P) levels in serum are positively correlated with the presence of mature oocytes. On the other hand, in FF, high concentration of E2 has been associated with successful fertilization, but elevated P level correlates with abnormal fertilization and cleavage. Due to these perturbations, natural cycle-in vitro fertilization (NC-IVF) has been proposed as an alternative to conventional COH-IVF in order to avoid disturbing the highly perfected synchronized hormone pathways in the follicle. This review serves to identify the hormone composition of the FF during folliculogenesis and reflects upon what may constitute an optimal environment for oocyte maturation. An added advantage of studying the FF composition of a natural follicle that results in a pregnancy (e.g. NC-IVF in healthy volunteers) is that it improves our understanding of the perturbations caused by various pathologies and their impact on oocyte’s developmental potential.

Keywords

Follicular fluid IVF Natural cycle Hormone Gonadotrophin stimulation Oestradiol Progesterone Testosterone Androstenedione FSH LH AMH hCG Prolactin Growth hormone Cortisol Insulin 

References

  1. 1.
    Williams CJ, Erickson GF. Chapter 1: morphology and physiology of the ovary. In: Rebar RW, editor. Female reproductive endocrinology. USA [internet; updated 30 January 2012]. Available from: http://www.endotext.org/female/.
  2. 2.
    Findlay JK, Drummond AE. Regulation of the FSH receptor in the ovary. Trends Endocrinol Metab. 1999;10:183–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Gougeon A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev. 1996;17:121–55.PubMedCrossRefGoogle Scholar
  4. 4.
    Eppig JJ. Oocyte control of ovarian follicular development and function in mammals. Reproduction. 2001;122:829–838. Review.Google Scholar
  5. 5.
    Erickson GF, Shimasaki S. The role of the oocyte in folliculogenesis. Trends Endocrinol Metab. 2000;11:193–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Vinatier D, Lefebvre-Maunoury C, Bernardi C. The ovaries, the immune system, cytokines: physiology. J Gynecol Obstet Biol Reprod (Paris). 1993;22:581–91.Google Scholar
  7. 7.
    Albertini DF, Combelles CMH, Benecchi E, Carabatsos MJ. Cellular basis for paracrine regulation of ovarian follicle development. Reproduction. 2001;121:647–53.PubMedCrossRefGoogle Scholar
  8. 8.
    Skinner MK. Regulation of primordial follicle assembly and development. Hum Reprod Update. 2005;11:461–71.PubMedCrossRefGoogle Scholar
  9. 9.
    Wilding M, Di Matteo L, D’Andretti S, Montanaro N, Capobianco C, Dale B. An oocyte score for use in assisted reproduction. J Assist Reprod Genet. 2007;24:350–8.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Schams D, Kosmann M, Berisha B, Amselgruber WM, Miyamoto A. Stimulatory and synergistic effects of luteinising hormone and insulin-like growth factor 1 on the secretion of vascular endothelial growth factor and progesterone of cultured bovine granulose cells. Exp Clin Endocrinol Diabetes. 2001;109:155–62.PubMedCrossRefGoogle Scholar
  11. 11.
    Jiang JY, Macchiarelli G, Miyabayashi K, Sato E. Follicular microvasculature in the porcine ovary. Cell Tissue Res. 2002;310(1):93–101.PubMedCrossRefGoogle Scholar
  12. 12.
    Carson R, Findlay J, Mattner P, Brown B. Relative levels of thecal blood flow in atretic and non-atretic ovarian follicles of the conscious sheep. Aust J Exp Biol Med Sci. 1986;64(Pt 4):381–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Rodgers RJ, Irving-Rodgers HF. Formation of the ovarian follicular antrum and follicular fluid. Biol Reprod. 2010;82(6):1021–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Edwards RG. Follicular fluid. J Reprod Fertil. 1974;37:189–219.PubMedCrossRefGoogle Scholar
  15. 15.
    Tolikas A, Tsakos E, Gerou S, Prapas Y, Loufopoulos A. Anti-Mullerian Hormone (AMH) levels in serum and follicular fluid as predictors of ovarian response in stimulated (IVF and ICSI) cycles. Hum Fertil (Camb). 2011;14(4):246–53.CrossRefGoogle Scholar
  16. 16.
    Hattori Y, Sato T, Okada H, Saito C, Sugiura-Ogasawara M. Comparison of follicular fluid and serum Anti-Mullerian hormone levels as predictors of the outcome of assisted reproductive treatment. Eur J Obstet Gynecol Reprod Biol. 2013;169(2):252–6.PubMedCrossRefGoogle Scholar
  17. 17.
    McNatty KP, Hunter WM, MacNeilly AS, Sawers RS. Changes in the concentration of pituitary and steroid hormones in the follicular fluid of human graafian follicles throughout the menstrual cycle. J Endocrinol. 1975;64(3):555–71.PubMedCrossRefGoogle Scholar
  18. 18.
    Baskind NE, Orsi NM, Sharma V. Follicular-phase ovarian follicular fluid and plasma cytokine profiling of natural cycle in vitro fertilization patients. Fertil Steril. 2014;102(2):410–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Baskind NE, Orsi NM, Sharma V. Impact of exogenous gonadotrophin stimulation on circulatory and follicular fluid cytokine profiles. Int J Reprod Med. 2014;2014:218769.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Baskind NE, McRae C, Sharma V, Fisher J. Understanding subfertility at a molecular level in the female through the application of nuclear magnetic resonance (NMR) spectroscopy. Hum Reprod Update. 2011;17(2):228–41.PubMedCrossRefGoogle Scholar
  21. 21.
    McRae C, Baskind NE, Orsi NM, Sharma V, Fisher J. Metabolic profiling of follicular fluid and plasma from natural cycle in vitro fertilization patients—a pilot study. Fertil Steril. 2012;98(6):1449–57.PubMedCrossRefGoogle Scholar
  22. 22.
    Shalgi R, Kraicer P, Rimon A, Pinto M, Soferman N. Proteins of human follicular fluid: the blood-follicle barrier. Fertil Steril. 1973;24(6):429–34.PubMedCrossRefGoogle Scholar
  23. 23.
    Garzo VG, Dorrington JH. Aromatase activity in human granulosa cells during follicular development and the modulation by follicle-stimulating hormone and insulin. Am J Obstet Gynecol. 1984;148(5):657–62.PubMedCrossRefGoogle Scholar
  24. 24.
    de los Santos MJ, García-Laez V, Beltrán D, Labarta E, Zuzuarregui JL, Alamá P et al. The follicular hormonal profile in low-responder patients undergoing unstimulated cycles: is it hypoandrogenic? Hum Reprod. 2013;28(1):224–9.Google Scholar
  25. 25.
    Parkes AS. Internal secretions of the ovary. London: Longmans Green; 1929.CrossRefGoogle Scholar
  26. 26.
    Short RV. Ovarian steroid synthesis and secretion in vivo. Recent Prog Horm Res. 1964;20:303–40.PubMedGoogle Scholar
  27. 27.
    Short RV, London DR. Defective biosynthesis of ovarian steroids in the Stein-Leventhal syndrome. Br Med J. 1961;1(5241):1724–7.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Short RV. Further observations on the defective synthesis of ovarian steroids in the Stein-Leventhal syndrome. J Endocrinol. 1962;24:359–65.PubMedCrossRefGoogle Scholar
  29. 29.
    Giorgi EP. The determination of steroids in cyst fluid from human polycystic ovaries. J Endocrinol. 1963;27:225–40.PubMedCrossRefGoogle Scholar
  30. 30.
    Giorgi EP. Steroids in cyst fluid from ovaries of normally menstruating women and of women with functional uterine bleeding. J Reprod Fertil. 1965;10(3):309–19.PubMedCrossRefGoogle Scholar
  31. 31.
    Edwards RG, Steptoe PC, Abraham GE, Walters E, Purdy JM, Fotherby K. Steroid assays and preovulatory follicular development in human ovaries primed with gonadotrophins. Lancet. 1972;2(7778):611–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Hilliard J, Eaton LW Jr. Estradiol-17 beta, progesterone and 20-alpha-hydroxypregn-4-en-3-one in rabbit ovarian venous plasma. II. From mating through implantation. Endocrinology. 1971;89(2):522–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Giorgi EP. Determination of free and conjugated oestrogens in fluid from human ovaries. J Endocrinol. 1967;37(2):211–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Drummond AE. The role of steroids in follicular growth. Reprod Biol Endocrinol. 2006;4:16.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hillier SG. Regulation of follicular oestrogen biosynthesis: a survey of current concepts. J Endocrinol. 1981;89(Suppl):3P–18P.PubMedGoogle Scholar
  36. 36.
    Williams PC. Effect of stilboestrol on the ovaries of hypophysectomised rat. Nature. 1940;145:388–9.CrossRefGoogle Scholar
  37. 37.
    Richards JS. Maturation of ovarian follicles: actions and interactions of pituitary and ovarian hormones on follicular cell differentiation. Physiol Rev. 1980;60(1):51–89.PubMedGoogle Scholar
  38. 38.
    Richards JS, Jonassen JA, Rolfes AI, Kersey K, Reichert LE Jr. Adenosine 3′,5′-monophosphate, luteinizing hormone receptor, and progesterone during granulosa cell differentiation: effects of estradiol and follicle-stimulating hormone. Endocrinology. 1979;104(3):765–73.PubMedCrossRefGoogle Scholar
  39. 39.
    Richards JS, Rolfes AI. Hormonal regulation of cyclic AMP binding to specific receptor proteins in rat ovarian follicles. Characterization by photoaffinity labeling. J Biol Chem. 1980;255(11):5481–9.PubMedGoogle Scholar
  40. 40.
    Byers M1, Kuiper GG, Gustafsson JA, Park-Sarge OK. Estrogen receptor-beta mRNA expression in rat ovary: down-regulation by gonadotropins. Mol Endocrinol 1997;11(2):172–82.Google Scholar
  41. 41.
    Grynberg M, Pierre A, Rey R, Leclerc A, Arouche N, Hesters L, et al. Differential regulation of ovarian anti-Müllerian hormone (AMH) by estradiol through α- and β-estrogen receptors. J Clin Endocrinol Metab. 2012;97(9):E1649–57.PubMedCrossRefGoogle Scholar
  42. 42.
    de Resende LO, Vireque AA, Santana LF, Moreno DA, de Sá Rosa e Silva AC, Ferriani RA et al. Single-cell expression analysis of BMP15 and GDF9 in mature oocytes and BMPR2 in cumulus cells of women with polycystic ovary syndrome undergoing controlled ovarian hyperstimulation. J Assist Reprod Genet. 2012;29(10):1057–65.Google Scholar
  43. 43.
    Du YB, Gao MZ, Shi Y, Sun ZG, Wang J. Endocrine and inflammatory factors and endometriosis-associated infertility in assisted reproduction techniques. Arch Gynecol Obstet. 2013;287(1):123–30.PubMedCrossRefGoogle Scholar
  44. 44.
    Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery CA Jr, et al. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev. 1995;9(18):2266–78.PubMedCrossRefGoogle Scholar
  45. 45.
    Karst AM, Drapkin R. Ovarian cancer pathogenesis: a model in evolution. J Oncol. 2010;2010:932371.PubMedCrossRefGoogle Scholar
  46. 46.
    Kim JJ, Kurita T, Bulun SE. Progesterone action in endometrial cancer, endometriosis, uterine fibroids, and breast cancer. Endocr Rev. 2013;34(1):130–62.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Conneely OM, Mulac-Jericevic B, DeMayo F, Lydon JP, O’Malley BW. Reproductive functions of progesterone receptors. Recent Prog Horm Res. 2002;57:339–55.PubMedCrossRefGoogle Scholar
  48. 48.
    Conneely OM, Mulac-Jericevic B, Lydon JP. Progesterone-dependent regulation of female reproductive activity by two distinct progesterone receptor isoforms. Steroids. 2003;68(10–13):771–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Hu YC, Wang PH, Yeh S, Wang RS, Xie C, Xu Q, et al. Subfertility and defective folliculogenesis in female mice lacking androgen receptor. Proc Natl Acad Sci U S A. 2004;101(31):11209–14.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Steckler T, Wang J, Bartol FF, Roy SK, Padmanabhan V. Fetal programming: prenatal testosterone treatment causes intrauterine growth retardation, reduces ovarian reserve and increases ovarian follicular recruitment. Endocrinology. 2005;146(7):3185–93.PubMedCrossRefGoogle Scholar
  51. 51.
    Gervásio CG, Bernuci MP, Silva-de-Sá MF, Rosa-E-Silva AC. The Role of Androgen Hormones in Early Follicular Development. ISRN Obstet Gynecol. 2014;2014:818010.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Lenie S, Smitz J. Functional AR signaling is evident in an in vitro mouse follicle culture bioassay that encompasses most stages of folliculogenesis. Biol Reprod. 2009;80(4):685–95.PubMedCrossRefGoogle Scholar
  53. 53.
    Duarte AB, Araújo VR, Chaves RN, da Silva GM, Luz VB, Haag KT, et al. Insulin-like growth factor II (IGF-II) and follicle stimulating hormone (FSH) combinations can improve the in vitro development of grown oocytes enclosed in caprine preantral follicles. Growth Horm IGF Res. 2013;23(1–2):37–44.PubMedCrossRefGoogle Scholar
  54. 54.
    Nimrod A. Studies on the synergistic effect of androgen on the stimulation of progestin secretion by FSH in cultured rat granulosa cells: progesterone metabolism and the effect of androgens. Mol Cell Endocrinol. 1977;8(3):189–99.PubMedCrossRefGoogle Scholar
  55. 55.
    Hillier SG, Knazek RA, Ross GT. Androgenic stimulation of progesterone production by granulosa cells from preantral ovarian follicles: further in vitro studies using replicate cell cultures. Endocrinology. 1977;100(6):1539–49.PubMedCrossRefGoogle Scholar
  56. 56.
    Hillier SG, De Zwart FA. Evidence that granulosa cell aromatase induction/activation by follicle-stimulating hormone is an androgen receptor-regulated process in-vitro. Endocrinology. 1981;109(4):1303–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Vendola K, Zhou J, Wang J, Bondy CA. Androgens promote insulin-like growth factor-I and insulin-like growth factor-I receptor gene expression in the primate ovary. Hum Reprod. 1999;14(9):2328–32.PubMedCrossRefGoogle Scholar
  58. 58.
    Gill A, Jamnongjit M, Hammes SR. Androgens promote maturation and signaling in mouse oocytes independent of transcription: a release of inhibition model for mammalian oocyte meiosis. Mol Endocrinol. 2004;18(1):97–104.PubMedCrossRefGoogle Scholar
  59. 59.
    Abbott DH, Dumesic DA, Franks S. Developmental origin of polycystic ovary syndrome—a hypothesis. J Endocrinol. 2002;174(1):1–5.PubMedCrossRefGoogle Scholar
  60. 60.
    Carlsson IB, Scott JE, Visser JA, Ritvos O, Themmen AP, Hovatta O. Anti-Müllerian hormone inhibits initiation of growth of human primordial ovarian follicles in vitro. Hum Reprod. 2006;21(9):2223–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Durlinger AL, Gruijters MJ, Kramer P, Karels B, Kumar TR, Matzuk MM, et al. Anti-Müllerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. Endocrinology. 2001;142(11):4891–9.CrossRefGoogle Scholar
  62. 62.
    Kelsey TW, Wright P, Nelson SM, Anderson RA, Wallace WH. A validated model of serum anti-Müllerian hormone from conception to menopause. PLoS ONE. 2011;6(7):e22024.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Dewailly D, Andersen CY, Balen A, Broekmans F, Dilaver N, Fanchin R, et al. The physiology and clinical utility of anti-Mullerian hormone in women. Hum Reprod Update. 2014;20(3):370–85.PubMedCrossRefGoogle Scholar
  64. 64.
    Jeppesen JV, Anderson RA, Kelsey TW, Christiansen SL, Kristensen SG, Jayaprakasan K, et al. Which follicles make the most Anti-Mullerian hormone in humans? Evidence for an abrupt decline in AMH production at the time of follicle selection. Mol Hum Reprod. 2013;19(8):519–27.PubMedCrossRefGoogle Scholar
  65. 65.
    Fanchin R, Schonäuer LM, Righini C, Frydman N, Frydman R, Taieb J. Serum anti-Müllerian hormone dynamics during controlled ovarian hyperstimulation. Hum Reprod. 2003;18(2):328–32.PubMedCrossRefGoogle Scholar
  66. 66.
    Durlinger AL, Kramer P, Karels B, de Jong FH, Uilenbroek JT, Grootegoed JA, et al. Control of primordial follicle recruitment by Anti-Müllerian hormone in the mouse ovary. Endocrinology. 1999;140(12):5789–96.CrossRefGoogle Scholar
  67. 67.
    Fanchin R, Mendez Lozano DH, Frydman N, Gougeon A, di Clemente N, Frydman R, et al. Anti-Müllerian hormone concentrations in the follicular fluid of the preovulatory follicle are predictive of the implantation potential of the ensuing embryo obtained by in vitro fertilization. J Clin Endocrinol Metab. 2007;92(5):1796–802.PubMedCrossRefGoogle Scholar
  68. 68.
    Takahashi C, Fujito A, Kazuka M, Sugiyama R, Ito H, Isaka K. Anti-Müllerian hormone substance from follicular fluid is positively associated with success in oocyte fertilization during in vitro fertilization. Fertil Steril. 2008;89(3):586–91.PubMedCrossRefGoogle Scholar
  69. 69.
    Pabuccu R, Kaya C, Cağlar GS, Oztas E, Satiroglu H. Follicular-fluid Anti-Mullerian hormone concentrations are predictive of assisted reproduction outcome in PCOS patients. Reprod Biomed Online. 2009;19(5):631–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Salmon NA, Handyside AH, Joyce IM. Oocyte regulation of Anti-Müllerian hormone expression in granulosa cells during ovarian follicle development in mice. Dev Biol. 2004;266(1):201–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Ben-Or S. Morphological and functional development of the ovary of the mouse. I. Morphology and histochemistry of the developing ovary in normal conditions and after FSH treatment. J Embryol Exp Morphol. 1963;11:1–11.PubMedGoogle Scholar
  72. 72.
    Eshkol A, Lunenfeld B, Peters H. Ovarian development in infant mice. Dependence on gonadotrophic hormones. In: Butt WR, Crooke AC, Ryle M, editors. Gonadotrophin and Ovarian Development. Edinburgh: Livingstone; 1970.Google Scholar
  73. 73.
    Hillier SG. Current concepts of the roles of follicle stimulating hormone and luteinizing hormone in folliculogenesis. Hum Reprod. 1994;9(2):188–91.PubMedCrossRefGoogle Scholar
  74. 74.
    Danilovich N, Babu PS, Xing W, Gerdes M, Krishnamurthy H, Sairam MR. Estrogen deficiency, obesity, and skeletal abnormalities in follicle-stimulating hormone receptor knockout (FORKO) female mice. Endocrinology. 2000;141(11):4295–308.CrossRefGoogle Scholar
  75. 75.
    Sherman BM, Korenman SG. Hormonal characteristics of the human menstrual cycle throughout reproductive life. J Clin Invest. 1975;55(4):699–706.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Slovis BH, Check JH. Younger women with diminished oocyte reserve are not more prone to meiosis errors leading to spontaneous abortion than their age peers with normal oocyte reserve. Clin Exp Obstet Gynecol. 2013;40(1):29–32.PubMedGoogle Scholar
  77. 77.
    Chakrabarti J. Serum leptin level in women with polycystic ovary syndrome: correlation with adiposity, insulin, and circulating testosterone. Ann Med Health Sci Res. 2013;3(2):191–6.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Baird DT, Swanston IA, McNeilly AS. Relationship between LH, FSH, and prolactin concentration and the secretion of androgens and estrogens by the preovulatory follicle in the ewe. Biol Reprod. 1981;24(5):1013–25.PubMedCrossRefGoogle Scholar
  79. 79.
    Ma X, Dong Y, Matzuk MM, Kumar TR. Targeted disruption of luteinizing hormone beta-subunit leads to hypogonadism, defects in gonadal steroidogenesis, and infertility. Proc Natl Acad Sci U S A. 2004;101(49):17294–9.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Sherman BM, West JH, Korenman SG. The menopausal transition: analysis of LH, FSH, estradiol, and progesterone concentrations during menstrual cycles of older women. J Clin Endocrinol Metab. 1976;42(4):629–36.PubMedCrossRefGoogle Scholar
  81. 81.
    Brodowska A, Laszczyńska M, Brodowski J, Masiuk M, Starczewski A. Analysis of pituitary gonadotropin concentration in blood serum and immunolocalization and immunoexpression of follicle stimulating hormone and luteinising hormone receptors in ovaries of postmenopausal women. Histol Histopathol. 2012;27(2):241–8.PubMedGoogle Scholar
  82. 82.
    Pacella L, Zander-Fox DL, Armstrong DT, Lane M. Women with reduced ovarian reserve or advanced maternal age have an altered follicular environment. Fertil Steril. 2012;98(4):986–94.PubMedCrossRefGoogle Scholar
  83. 83.
    McNatty KP, Sawers RS, McNeilly AS. A possible role for prolactin in control of steroid secretion by the human Graafian follicle. Nature. 1974;250(5468):653–5.PubMedCrossRefGoogle Scholar
  84. 84.
    Walters DL, Kaltenbach CC, Dunn TG, Short RE. Pituitary and ovarian function in postpartum beef cows. I. Effect of suckling on serum and follicular fluid hormones and follicular gonadotropin receptors. Biol Reprod. 1982;26(4):640–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Lindner C1, Lichtenberg V, Westhof G, Braendle W, Bettendorf G. Endocrine parameters of human follicular fluid and fertilization capacity of oocytes. Horm Metab Res. 1988;20(4):243–6.Google Scholar
  86. 86.
    Laufer N, Botero-Ruiz W, DeCherney AH, Haseltine F, Polan ML, Behrman HR. Gonadotropin and prolactin levels in follicular fluid of human ova successfully fertilized in vitro. J Clin Endocrinol Metab. 1984;58(3):430–4.PubMedCrossRefGoogle Scholar
  87. 87.
    Tarlatzis BC, Laufer N, DeCherney AH, Polan ML, Haseltine FP, Behrman HR. Adenosine 3′,5′-monophosphate levels in human follicular fluid: relationship to oocyte maturation and achievement of pregnancy after in vitro fertilization. J Clin Endocrinol Metab. 1985;60(6):1111–5.PubMedCrossRefGoogle Scholar
  88. 88.
    Oda T, Yoshimura Y, Izumi Y, Yoshimura S, Hara T, Takehara Y, et al. The effect of the follicular fluid adenosine 3′,5′-monophosphate degradation rate on successful fertilization and cleavage of human oocytes. J Clin Endocrinol Metab. 1990;71(1):116–21.PubMedCrossRefGoogle Scholar
  89. 89.
    Lee MS, Ben-Rafael Z, Meloni F, Mastroianni L Jr, Flickinger GL. Relationship of human oocyte maturity, fertilization, and cleavage to follicular fluid prolactin and steroids. J In Vitro Fert Embryo Transf. 1987;4(3):168–72.PubMedCrossRefGoogle Scholar
  90. 90.
    Messinis IE, Templeton AA. Relationship between intrafollicular levels of prolactin and sex steroids and in-vitro fertilization of human oocytes. Hum Reprod. 1987;2(7):607–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Reinthaller A, Deutinger J, Riss P, Müller-Tyl E, Fischl F, Bieglmayer C, et al. Relationship between the steroid and prolactin concentration in follicular fluid and the maturation and fertilization of human oocytes. J In Vitro Fert Embryo Transf. 1987;4(4):228–31.PubMedCrossRefGoogle Scholar
  92. 92.
    Subramanian MG1, Sacco AG, Moghissi KS, Magyar DM, Hayes MF, Lawson DM et al. Human follicular fluid: prolactin is biologically active and ovum fertilization correlates with estradiol concentration. J In Vitro Fert Embryo Transf. 1988;5(3):129–33.Google Scholar
  93. 93.
    Rosenbusch B, Djalali M, Sterzik K. Is there any correlation between follicular fluid hormone concentrations, fertilizability, and cytogenetic analysis of human oocytes recovered for in vitro fertilization? Fertil Steril. 1992;57(6):1358–60.PubMedCrossRefGoogle Scholar
  94. 94.
    Lanzone A, Fortini A, Fulghesu AM, Soranna L, Caruso A, Mancuso S. Growth hormone enhances estradiol production follicle-stimulating hormone-induced in the early stage of the follicular maturation. Fertil Steril. 1996;66(6):948–53.PubMedCrossRefGoogle Scholar
  95. 95.
    Tapanainen J, Martikainen H, Voutilainen R, Orava M, Ruokonen A, Ronnberg L. Effect of growth hormone administration on human ovarian function and steroidogenic gene expression in granulosa-luteal cells. Fertil Steril. 1992;58:726–32.PubMedCrossRefGoogle Scholar
  96. 96.
    Bachelot A, Monget P, Imbert-Bolloré P, Coshigano K, Kopchick JJ, Kelly PA, et al. Growth hormone is required for ovarian follicular growth. Endocrinology. 2002;143(10):4104–12.PubMedCrossRefGoogle Scholar
  97. 97.
    Poretsky L, Cataldo NA, Resenwaks Z, Giudice IC. The insulin-related ovarian regulatory system in health and disease. Endocrinol Rev. 1999;20:535–82.CrossRefGoogle Scholar
  98. 98.
    Kalra S, Kalra B, Sharma A, Thakral M, Ahalawat A. Growth hormone in the management of female infertility. Internet J Endocrinol. 2008;5(2).Google Scholar
  99. 99.
    Mendoza C, Ruiz-Requena E, Ortega E, Cremades N, Martinez F, Bernabeu R, et al. Follicular fluid markers of oocyte developmental potential. Hum Reprod. 2002;17(4):1017–22.PubMedCrossRefGoogle Scholar
  100. 100.
    Barbieri RL, Makris A, Ryan KJ. Effects of insulin on steroidogenesis in cultured porcine ovarian theca. Fertil Steril. 1983;40(2):237–41.PubMedCrossRefGoogle Scholar
  101. 101.
    Tsafriri A, Channing CP. Influence of follicular maturation and culture conditions on the meiosis of pig oocytes in vitro. J Reprod Fertil. 1975;43(1):149–52.PubMedCrossRefGoogle Scholar
  102. 102.
    Diamond MP, Webster BW, Carr RK, Wentz AC, Osteen KG. Human follicular fluid insulin concentrations. J Clin Endocrinol Metab. 1985;61(5):990–2.PubMedCrossRefGoogle Scholar
  103. 103.
    Harlow CR, Jenkins JM, Winston RM. Increased follicular fluid total and free cortisol levels during the luteinizing hormone surge. Fertil Steril. 1997;68(1):48–53.PubMedCrossRefGoogle Scholar
  104. 104.
    Keay SD, Harlow CR, Wood PJ, Jenkins JM, Cahill DJ. Higher cortisol:cortisone ratios in the preovulatory follicle of completely unstimulated IVF cycles indicate oocytes with increased pregnancy potential. Hum Reprod. 2002;17(9):2410–4.PubMedCrossRefGoogle Scholar
  105. 105.
    Lewicka S, von Hagens C, Hettinger U, Grunwald K, Vecsei P, Runnebaum B, et al. Cortisol and cortisone in human follicular fluid and serum and the outcome of IVF treatment. Hum Reprod. 2003;18(8):1613–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Smith MP, Keay SD, Margo FC, Harlow CR, Wood PJ, Cahill DJ, et al. Total cortisol levels are reduced in the periovulatory follicle of infertile women with minimal-mild endometriosis. Am J Reprod Immunol. 2002;47(1):52–6.PubMedCrossRefGoogle Scholar
  107. 107.
    Revelli A, Dolfin E, Gennarelli G, Lantieri T, Massobrio M, Holte JG, et al. Low-dose acetylsalicylic acid plus prednisolone as an adjuvant treatment in IVF: a prospective, randomized study. Fertil Steril. 2008;90(5):1685–91.PubMedCrossRefGoogle Scholar
  108. 108.
    Loret de Mola JR, Goldfarb JM, Hecht BR, Babbo CJ, Friedlander MA. Gonadotropins induce higher active renin levels in the follicular fluid of normal and hyperstimulated cycles. Gynecol Endocrinol. 1999;13(3):155–60.Google Scholar
  109. 109.
    Pelinck MJ, Hoek A, Simons AH, Heineman MJ. Efficacy of natural cycle IVF: a review of the literature. Hum Reprod Update. 2002;8(2):129–39.PubMedCrossRefGoogle Scholar
  110. 110.
    Rosen MP, Shen S, Dobson AT, Rinaudo PF, McCulloch CE, Cedars MI. A quantitative assessment of follicle size on oocyte developmental competence. Fertil Steril. 2008;90(3):684–90.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Wang SX. The past, present and future of embryo selection in in vitro fertilization: frontiers in Reproduction Conference. Yale J Biol Med. 2011;84(4):487–90.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Macklon NS, Stouffer RL, Giudice LC, Fauser BC. The Science behind 25 years of Ovarian Stimulation for in Vitro fertilization. Endocr Rev. 2006;27(2):170–207.PubMedCrossRefGoogle Scholar
  113. 113.
    Geraedts JP, Gianaroli L. Embryo selection and IVF. Hum Reprod. 2012;27(9):2876–7.PubMedCrossRefGoogle Scholar
  114. 114.
    Sharma V, Williams J, Collins W, Riddle A, Mason B, Whitehead M. A comparison of treatments with exogenous FSH to promote folliculogenesis in patients with quiescent ovaries due to the continued administration of an LH-RH agonist. Hum Reprod. 1987;2(7):553–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Sharma V, Whitehead M, Mason B, Pryse-Davies J, Ryder T, Dowsett M, et al. Influence of superovulation on endometrial and embryonic development. Fertil Steril. 1990;53(5):822–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Horcajadas JA, Riesewijk A, Polman J, van Os R, Pellicer A, Mosselman S, et al. Effect of controlled ovarian hyperstimulation in IVF on endometrial gene expression profiles. Mol Hum Reprod. 2005;11(3):195–205.PubMedCrossRefGoogle Scholar
  117. 117.
    Baart EB, Martini E, Eijkemans MJ, Van Opstal DV, Beckers NGM, Verhoeff A, et al. Milder ovarian stimulation for in-vitro fertilization reduces aneuploidy in the human preimplantation embryo: a randomised controlled trial. Hum Reprod. 2007;22(4):980–8.PubMedCrossRefGoogle Scholar
  118. 118.
    Horcajadas JA, Díaz-Gimeno P, Pellicer A, Simón C. Uterine receptivity and the ramifications of ovarian stimulation on endometrial function. Semin Reprod Med. 2007;25(6):454–60.PubMedCrossRefGoogle Scholar
  119. 119.
    Horcajadas JA, Mínguez P, Dopazo J, Esteban FJ, Domínguez F, Giudice LC, et al. Controlled ovarian stimulation induces a functional genomic delay of the endometrium with potential clinical implications. J Clin Endocrinol Metab. 2008;93(11):4500–10.PubMedCrossRefGoogle Scholar
  120. 120.
    Santos MA, Kuijk EW, Macklon NS. The impact of ovarian stimulation for IVF on the developing embryo. Reproduction. 2010;139(1):23–34.PubMedCrossRefGoogle Scholar
  121. 121.
    Pellicer A, Ruiz A, Castellvi RM, Calatayud C, Ruiz M, Tarin JJ, et al. Is the retrieval of high numbers of oocytes desirable in patients treated with gonadotrophin-releasing hormone analogues (GnRHa) and gonadotrophins? Hum Reprod. 1989;4:536–40.PubMedCrossRefGoogle Scholar
  122. 122.
    van der Gaast MH, Eijkemans MJ, van der Net JB, de Boer EJ, Burger CW, van Leeuwen FE. Optimum number of oocytes for a successful first IVF treatment cycle. Reprod Biomed Online. 2006;13:476–80.PubMedCrossRefGoogle Scholar
  123. 123.
    Aboulghar MA, Mansour RT, Serour GI, Ramzy AM, Amin YM. Oocyte quality in patients with severe ovarian hyperstimulation syndrome. Fertil Steril. 1997;68:1017–21.PubMedCrossRefGoogle Scholar
  124. 124.
    Hodges CA, Ilagan A, Jennings D, Keri R, Nilson J, Hunt PA. Experimental evidence that changes in oocyte growth influence meiotic chromosome segregation. Hum Reprod. 2002;17:1171–80.PubMedCrossRefGoogle Scholar
  125. 125.
    Ertzeid G, Storeng R. Adverse effects of gonadotrophin treatment on pre- and postimplantation development in mice. J Reprod Fertil. 1992;96:649–55.PubMedCrossRefGoogle Scholar
  126. 126.
    Van der Auwera I, D’Hooghe T. Superovulation of female mice delays embryonic and fetal development. Hum Reprod. 2001;16:1237–43.PubMedCrossRefGoogle Scholar
  127. 127.
    Andersen AN, Devroey P, Arce JC. Clinical outcome following stimulation with highly purified hMG or recombinant FSH in patients undergoing IVF: a randomized assessor-blind controlled trial. Hum Reprod. 2006;21:3217–27.PubMedCrossRefGoogle Scholar
  128. 128.
    Weghofer A, Munne S, Brannath W, Chen S, Barad D, Cohen J, et al. The impact of LH-containing gonadotropin stimulation on euploidy rates in preimplantation embryos: antagonist cycles. Fertil Steril. 2008;92:937–42.PubMedCrossRefGoogle Scholar
  129. 129.
    Regan L, Owen EJ, Jacobs HS. Hypersecretion of luteinising hormone, infertility, and miscarriage. Lancet. 1990;336:1141–4.PubMedCrossRefGoogle Scholar
  130. 130.
    Hugues JN, Soussis J, Calderon I, Balasch J, Anderson RA, Romeu A. Does the addition of recombinant LH in WHO group II anovulatory women over-responding to FSH treatment reduce the number of developing follicles? A dose-finding study. Hum Reprod. 2005;20:629–35.PubMedCrossRefGoogle Scholar
  131. 131.
    Shoham Z. The clinical therapeutic window for luteinizing hormone in controlled ovarian stimulation. Fertil Steril. 2002;77:1170–7.PubMedCrossRefGoogle Scholar
  132. 132.
    Durnerin CI, Erb K, Fleming R, Hillier H, Hillier SG, Howles CM et al., Luveris Pretreatment Group. Effects of recombinant LH treatment on folliculogenesis and responsiveness to FSH stimulation. Hum Reprod. 2008;23(2):421–6.Google Scholar
  133. 133.
    Lisi F, Rinaldi L, Fishel S, Caserta D, Lisi R, Campbell A. Evaluation of two doses of recombinant luteinizing hormone supplementation in an unselected group of women undergoing follicular stimulation for in vitro fertilization. Fertil Steril. 2005;83(2):309–15.PubMedCrossRefGoogle Scholar
  134. 134.
    Schimberni M, Morgia F, Colabianchi J, Giallonardo A, Piscitelli C, Giannini P, et al. Natural-cycle in-vitro fertilization in poor responder patients: a survey of 500 consecutive cycles. Fertil Steril. 2008;92:1297–301.PubMedCrossRefGoogle Scholar
  135. 135.
    Macklon NS, Fauser BC. Mild stimulation in in vitro fertilization. Ann N Y Acad Sci. 2003;997:105–11.PubMedCrossRefGoogle Scholar
  136. 136.
    Gordon JD, DiMattina M, Reh A, Botes A, Celia G, Payson M. Utilization and success rates of unstimulated in vitro fertilization in the United States: an analysis of the society for assisted reproductive technology database. Fertil Steril. 2013;100(2):392–5.PubMedCrossRefGoogle Scholar
  137. 137.
    Nargund G, Fauser BCJM, Macklon N, Ombelet W, Nygren K, Frydman R for the Rotterdam ISMAAR Consensus Group on Terminology for Ovarian Stimulation for IVF. The ISMAAR proposal on terminology for ovarian stimulation for IVF. Hum Reprod. 2007;22(11):2801–4.Google Scholar
  138. 138.
    Fauser BC, Nargund G, Andersen AN, Norman R, Tarlatzis B, Boivin J, et al. Mild ovarian stimulation for IVF: 10 years later. Hum Reprod. 2010;25(11):2678–84.PubMedCrossRefGoogle Scholar
  139. 139.
    Aanesen A, Nygren KG, Nylund L. Modified natural cycle IVF and mild IVF: a 10 year Swedish experience. Reprod Biomed Online. 2010;20(1):156–62.PubMedCrossRefGoogle Scholar
  140. 140.
    Enien WM, el Sahwy S, Harris CP, Seif MW, Elstein M. Human chorionic gonadotrophin and steroid concentrations in follicular fluid: the relationship to oocyte maturity and fertilization rates in stimulated and natural in-vitro fertilization cycles. Hum Reprod. 1995;10(11):2840–4.PubMedCrossRefGoogle Scholar
  141. 141.
    Vujisic S, Zidovec S. Follicular immunology environment and the influence on in-vitro fertilization outcome. Curr Womens Health Rev. 2005;1:49–60.CrossRefGoogle Scholar
  142. 142.
    Mendoza C, Cremades N, Ruiz-Requena E, Martinez F, Ortega E, Bernebeu et al. Relationship between fertilization results after intracystoplasmic sperm injection, and follicular steroid, pituitary hormones and cytokine concentrations. Hum Reprod. 1999;14:628–35.Google Scholar
  143. 143.
    Revelli A, Delle Piane L, Casano S, Molinari E, Massobrio M, Rinaudo P. Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod Biol Endocrinol. 2009;7:40.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Fauser BC, Van Heusden AM. Manipulation of human ovarian function: physiological concepts and clinical consequences. Endocr Rev. 1997;18(1):71–106.PubMedGoogle Scholar
  145. 145.
    Itskovitz J, Rubattu S, Rosenwaks Z, Liu HC, Sealey JE. Relationship of follicular fluid prorenin to oocyte maturation, steroid levels, and outcome of in vitro fertilization. J Clin Endocrinol Metab. 1991;72(1):165–71.PubMedCrossRefGoogle Scholar
  146. 146.
    Elting MW, Kwee J, Schats R, Rekers-Mombarg LT, Schoemaker J. The rise of estradiol and inhibin B after acute stimulation with follicle-stimulating hormone predict the follicle cohort size in women with polycystic ovary syndrome, regularly menstruating women with polycystic ovaries, and regularly menstruating women with normal ovaries. J Clin Endocrinol Metab. 2001;86(4):1589–95.PubMedGoogle Scholar
  147. 147.
    McNatty KP, Smith DM, Makris A, Osathanondh R, Ryan KJ. The microenvironment of the human antral follicle: interrelationships among the steroid levels in antral fluid, the population of granulosa cells, and the status of the oocyte in vivo and in vitro. J Clin Endocrinol Metab. 1979;49(6):851–60.PubMedCrossRefGoogle Scholar
  148. 148.
    Brailly S, Gougeon A, Milgrom E, Bomsel-Helmreich O, Papiernik E. Androgens and progestins in the human ovarian follicle: differences in the evolution of preovulatory, healthy nonovulatory, and atretic follicles. J Clin Endocrinol Metab. 1981;53(1):128–34.PubMedCrossRefGoogle Scholar
  149. 149.
    van Santbrink EJ, Hop WC, van Dessel TJ, de Jong FH, Fauser BC. Decremental follicle-stimulating hormone and dominant follicle development during the normal menstrual cycle. Fertil Steril. 1995;64(1):37–43.PubMedGoogle Scholar
  150. 150.
    Klein NA, Battaglia DE, Miller PB, Branigan EF, Giudice LC, Soules MR. Ovarian follicular development and the follicular fluid hormones and growth factors in normal women of advanced reproductive age. J Clin Endocrinol Metab. 1996;81(5):1946–51.PubMedGoogle Scholar
  151. 151.
    van Dessel HJ, Schipper I, Pache TD, van Geldorp H, de Jong FH, Fauser BC. Normal human follicle development: an evaluation of correlations with oestradiol, androstenedione and progesterone levels in individual follicles. Clin Endocrinol (Oxf). 1996;44(2):191–8.CrossRefGoogle Scholar
  152. 152.
    Walters KA, Allan CM, Handelsman DJ. Androgen actions and the ovary. Biol Reprod. 2008;78(3):380–9.PubMedCrossRefGoogle Scholar
  153. 153.
    Lin PC, Abdallah MA, Eblen AC, Nakajima ST. Serum and follicular fluid hormonal levels during ovulation induction. Fertil Steril. 2002;77(3):635–7.PubMedCrossRefGoogle Scholar
  154. 154.
    Kushnir MM, Naessen T, Kirilovas D, Chaika A, Nosenko J, Mogilevkina I, et al. Steroid profiles in ovarian follicular fluid from regularly menstruating women and women after ovarian stimulation. Clin Chem. 2009;55(3):519–26.PubMedCrossRefGoogle Scholar
  155. 155.
    de los Santos MJ, García-Láez V, Beltrán-Torregrosa D, Horcajadas JA, Martínez-Conejero JA, Esteban FJ et al. Hormonal and molecular characterization of follicular fluid, cumulus cells and oocytes from pre-ovulatory follicles in stimulated and unstimulated cycles. Hum Reprod. 2012;27(6):1596–605.Google Scholar
  156. 156.
    Jančar N, Virant-Klun I, Bokal EV. Serum and follicular endocrine profile is different in modified natural cycles than in cycles stimulated with gonadotropin and gonadotropin-releasing hormone antagonist. Fertil Steril. 2009;92(6):2069–71.PubMedCrossRefGoogle Scholar
  157. 157.
    Andersen CY. Characteristics of human follicular fluid associated with successful conception after in vitro fertilization. J Clin Endocrinol Metab. 1993;77(5):1227–34.PubMedGoogle Scholar
  158. 158.
    Xia P, Younglai EV. Relationship between steroid concentrations in ovarian follicular fluid and oocyte morphology in patients undergoing intracytoplasmic sperm injection (ICSI) treatment. J Reprod Fertil. 2000;118(2):229–33.PubMedCrossRefGoogle Scholar
  159. 159.
    Andersen CY, Lossl K. Increased intrafollicular androgen levels affect human granulosa cell secretion of Anti-Müllerian hormone and inhibin-B. Fertil Steril. 2008;89(6):1760–5.PubMedCrossRefGoogle Scholar
  160. 160.
    von Wolff M, Kollmann Z, Flück CE, Stute P, Marti U, Weiss B, et al. Gonadotrophin stimulation for in vitro fertilization significantly alters the hormone milieu in follicular fluid: a comparative study between natural cycle IVF and conventional IVF. Hum Reprod. 2014;29(5):1049–57.CrossRefGoogle Scholar
  161. 161.
    Hill MJ1, Levens ED, Levy G, Ryan ME, Csokmay JM, DeCherney AH et al. The use of recombinant luteinizing hormone in patients undergoing assisted reproductive techniques with advanced reproductive age: a systematic review and meta-analysis. Fertil Steril. 2012;97(5):1108–14.Google Scholar
  162. 162.
    de Resende LO, dos Reis RM, Ferriani RA, Vireque AA, Santana LF, de Sá Rosa e Silva AC et al. Concentration of steroid hormones in the follicular fluid of mature and immature ovarian follicles of patients with polycystic ovary syndrome submitted to in vitro fertilization. Rev Bras Ginecol Obstet. 2010;32(9):447–53.Google Scholar
  163. 163.
    Teissier MP, Chable H, Paulhac S, Aubard Y. Recombinant human follicle stimulating hormone versus human menopausal gonadotrophin induction: effects in mature follicle endocrinology. Hum Reprod. 1999;14(9):2236–41.PubMedCrossRefGoogle Scholar
  164. 164.
    Campos CS, Vaamonde D, Andreoli C, Martins AC, Genro VK, Souza CA, et al. Follicular-fluid Anti-Müllerian hormone concentration is similar in patients with endometriosis compared with non-endometriotic patients. Reprod Biomed Online. 2010;21(4):470–3.PubMedCrossRefGoogle Scholar
  165. 165.
    Cahill DJ, Wardle PG, Maile LA, Harlow CR, Hull MG. Pituitary-ovarian dysfunction as a cause for endometriosis-associated and unexplained infertility. Hum Reprod. 1995;10(12):3142–6.PubMedCrossRefGoogle Scholar
  166. 166.
    Bedaiwy M, Shahin AY, AbulHassan AM, Goldberg JM, Sharma RK, Agarwal A, et al. Differential expression of follicular fluid cytokines: relationship to subsequent pregnancy in IVF cycles. Reprod Biomed Online. 2007;15:321–5.PubMedCrossRefGoogle Scholar
  167. 167.
    Van Blerkom J, Antczak M, Schrader R. The developmental potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: association with vascular endothelial growth factor levels and perifollicular blood flow characteristics. Hum Reprod. 1997;12:1047–55.PubMedCrossRefGoogle Scholar
  168. 168.
    Davidson TR, Chamberlain CS, Bridges TS, Spicer LJ. Effect of follicle size on in-vitro production of steroids and insulin-like growth factor (IGF)-I, IGF-II, and the IGF-binding proteins by equine ovarian granulosa cells. Biol Reprod. 2002;66:1640–8.PubMedCrossRefGoogle Scholar
  169. 169.
    Eppig JJ. Coordination of nuclear and cytoplasmic oocyte maturation in eutherian mammals. Reprod Fertil Dev. 1996;8:485–9.PubMedCrossRefGoogle Scholar
  170. 170.
    Sundstrӧm P, Nilsson BO. Meiotic and cytoplasmic maturation of oocytes collected in stimulated cycles is asynchronous. Hum Reprod. 1988;3:613–9.CrossRefGoogle Scholar
  171. 171.
    Monniaux D, Huet C, Besnard N, Clément F, Bosc M, Pisselet C, et al. Follicular growth and ovarian dynamics in mammals. J Reprod Fertil Suppl. 1997;51:3–23.PubMedGoogle Scholar
  172. 172.
    Lussier JG, Matton P, Dufour JJ. Growth rates of follicles in the ovary of the cow. J Reprod Fert. 1987;81:301–7.CrossRefGoogle Scholar
  173. 173.
    Zegers-Hochschild F, Gómez Lira C, Parada M, Altieri Lorenzini E. A comparative study of the follicular growth profile in conception and nonconception cycles. Fertil Steril. 1984;41(2):244–7.Google Scholar
  174. 174.
    Nayadu PL. Relationship of constructed follicular growth patterns in stimulated cycles to outcome after IVF. Hum Reprod. 1991;6:465–71.CrossRefGoogle Scholar
  175. 175.
    Lo Turco EG, Bertolla RP, Stevanto J, Victorino AB, Cedenho AP. Influence of follicular growth dynamics on pregnancy rates in controlled ovarian stimulation cycles. Fertil Steril. 2007;88:S168.Google Scholar
  176. 176.
    Eppig JJ, Chesnel F, Hirao Y, O’Brien MJ, Pendola FL, Watanabe S, Wigglesworth K. Oocyte control of granulosa cell development: how and why. Hum Reprod. 1997;12(11 Suppl):127–32.PubMedGoogle Scholar
  177. 177.
    Albertini DF, Sanfins A, Combelles CM. Origins and manifestations of oocyte maturation competencies. Reprod Biomed Online. 2003;6(4):410–5.PubMedCrossRefGoogle Scholar
  178. 178.
    Barrett SL, Albertini DF. Cumulus cell contact during oocyte maturation in mice regulates meiotic spindle positioning and enhances developmental competence. J Assist Reprod Genet. 2010;27(1):29–39.PubMedCrossRefGoogle Scholar
  179. 179.
    Hess KA, Chen L, Larsen WJ. The ovarian blood follicle barrier is both charge- and size-selective in mice. Biol Reprod. 1998;58(3):705–11.PubMedCrossRefGoogle Scholar
  180. 180.
    Mitsube K1, Brännström M, Haraldsson B. Modulation of microvascular permeability in the preovulatory rat ovary by an ovulatory gonadotropin stimulus. Fertil Steril. 2013;99(3):903–9.Google Scholar
  181. 181.
    Von Wolff M, Schneider S, Kollmann Z, Weiss B, Bersinger NA. Exogenous gonadotrophins do not increase the blood-follicular transportation capacity of extra-ovarian hormones such as prolactin and cortisol. Reprod Biol Endocrinol. 2013;11:87.CrossRefGoogle Scholar
  182. 182.
    Yding Andersen C1, Westergaard LG, Figenschau Y, Bertheussen K, Forsdahl F. Endocrine composition of follicular fluid comparing human chorionic gonadotrophin to a gonadotrophin-releasing hormone agonist for ovulation induction. Hum Reprod. 1993;8(6):840–3.Google Scholar
  183. 183.
    Lenton EA1. Natural cycle IVF with and without terminal HCG: learning from failed cycles. Reprod Biomed Online. 2007;15(2):149–55.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Leeds FertilityLeeds Teaching Hospitals NHS TrustLeedsUK

Personalised recommendations