Advertisement

Using Domain Knowledge to Enhance Process Mining Results

  • P. M. DixitEmail author
  • J. C. A. M. Buijs
  • Wil M. P. van der Aalst
  • B. F. A. Hompes
  • J. Buurman
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 244)

Abstract

Process discovery algorithms typically aim at discovering process models from event logs. Most algorithms achieve this by solely using an event log, without allowing the domain expert to influence the discovery in any way. However, the user may have certain domain expertise which should be exploited to create better process models. In this paper, we address this issue of incorporating domain knowledge to improve the discovered process model. First, we present a verification algorithm to verify the presence of certain constraints in a process model. Then, we present three modification algorithms to modify the process model. The outcome of our approach is a Pareto front of process models based on the constraints specified by the domain expert and common quality dimensions of process mining.

Keywords

User guided process discovery Declare templates Domain knowledge Algorithm post processing 

References

  1. 1.
    Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance checking using cost-based fitness analysis. In: 15th IEEE International Enterprise Distributed Object Computing Conference (EDOC), pp. 55–64. IEEE (2011)Google Scholar
  2. 2.
    Adriansyah, A., Dongen, B.F., van der Aalst, W.M.P.: Towards robust conformance checking. In: Muehlen, M., Su, J. (eds.) BPM 2010. LNBIP, vol. 66, pp. 122–133. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20511-8_11 CrossRefGoogle Scholar
  3. 3.
    Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P. Verifiable agent interaction in abductive logic programming: The sciff framework. ACM Trans. Comput. Logic 9(4), 29:1–29:43 (2008)Google Scholar
  4. 4.
    Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: A genetic algorithm for discovering process trees. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2012)Google Scholar
  5. 5.
    Buijs, J., van Dongen, B.F., van der Aalst, W.M.P. Quality dimensions in process discovery: the importance of fitness, precision, generalization and simplicity. Int. J. Cooperative Inf. Syst., 23(1) (2014). doi: 10.1142/S0218843014400012
  6. 6.
    Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting inductive logic programming techniques for declarative process mining. In: Jensen, K., van der Aalst, W.M.P. (eds.) ToPNoC II. LNCS, vol. 5460, pp. 278–295. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00899-3_16 CrossRefGoogle Scholar
  7. 7.
    Ciccio, C., Mecella, M.: Mining constraints for artful processes. In: Abramowicz, W., Kriksciuniene, D., Sakalauskas, V. (eds.) BIS 2012. LNBIP, vol. 117, pp. 11–23. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-30359-3_2 CrossRefGoogle Scholar
  8. 8.
    Leoni, M., Maggi, F.M., van der Aalst, W.M.P.: Aligning event logs and declarative process models for conformance checking. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 82–97. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32885-5_6 CrossRefGoogle Scholar
  9. 9.
    de Leoni, M., Mannhardt, F.: Road traffic fine management process. http://dx.doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
  10. 10.
    Dixit, P.M., Buijs, J.C.A.M., van der Aalst, W.M.P., Hompes, B.F.A., Buurman, J.: Enhancing process mining results using domain knowledgeGoogle Scholar
  11. 11.
    Fahland, D., van der Aalst, W.M.P.: Repairing process models to reflect reality. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 229–245. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32885-5_19 CrossRefGoogle Scholar
  12. 12.
    Giordano, L., Martelli, A., Spiotta, M., Dupre, D.T.: Business process verification with constraint temporal answer set programming. Theory, Pract. Logic Program. 13, 641–655 (2013). doi: 10.1017/S1471068413000409
  13. 13.
    Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery with artificial negative events. J. Mach. Learn. Res. 10, 1305–1340 (2009)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Greco, G., Guzzo, A., Lupa, F., Luigi, P.: Process discovery under precedence constraints. ACM Trans. Knowl. Discov. Data 9(4), 2:1–32:39 (2015)Google Scholar
  15. 15.
    Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying inductive logic programming to process mining. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 132–146. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78469-2_16 CrossRefGoogle Scholar
  16. 16.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-06257-0_6 CrossRefGoogle Scholar
  17. 17.
    Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declarative process models. In: IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 192–199. IEEE (2011)Google Scholar
  18. 18.
    Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declare: full support for loosely-structured processes. In: 11th IEEE International Enterprise Distributed Object Computing Conference, EDOC, p. 287. IEEE (2007)Google Scholar
  19. 19.
    Ramezani, E., Fahland, D., van der Aalst, W.M.P.: Where did i misbehave? diagnostic information in compliance checking. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 262–278. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32885-5_21 CrossRefGoogle Scholar
  20. 20.
    Rembert, A.J., Omokpo, A., Mazzoleni, P., Goodwin, R.T.: Process discovery using prior knowledge. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 328–342. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-45005-1_23 CrossRefGoogle Scholar
  21. 21.
    Runte, W., El Kharbili, M.: Constraint checking for business process management. In: GI Jahrestagung, pp. 4093–4103 (2009)Google Scholar
  22. 22.
    van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  23. 23.
    Werf, J.M.E.M., Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process discovery using integer linear programming. In: Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062, pp. 368–387. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-68746-7_24 CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  • P. M. Dixit
    • 1
    • 2
    Email author
  • J. C. A. M. Buijs
    • 2
  • Wil M. P. van der Aalst
    • 2
  • B. F. A. Hompes
    • 1
    • 2
  • J. Buurman
    • 1
  1. 1.Philips ResearchEindhovenThe Netherlands
  2. 2.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations