An Agent-Based Architecture for Personalized Recommendations

  • Amel Ben OthmaneEmail author
  • Andrea Tettamanzi
  • Serena Villata
  • Nhan LE Thanh
  • Michel Buffa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10162)


This paper proposes a design framework for a personalized multi-agent recommender system. More precisely, the proposed framework is a multi-context based recommender system that takes into account user preferences to generate a plan satisfying those preferences. Agents in this framework have a Belief-Desire-Intention (BDI) component based on the well-known BDI architecture. These BDI agents are empowered with cognitive capabilities in order to interact with others agents. They are also able to adapt to the environment changes and to the information coming from other agents. The architecture includes also a planning module based on ontologies in order to represent and reason about plans and intentions. The applicability of the proposed model is shown through a simulation in the NetLogo environment.


Recommender System Possibility Distribution Trust Degree Mental Attitude Necessity Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Koster, A., Schorlemmer, M., Sabater-Mir, J.: Opening the black box of trust: reasoning about trust models in a BDI agent. J. Log. Comput. 23(1), exs003–58 (2012)MathSciNetGoogle Scholar
  2. 2.
    Pinyol, I., Sabater-Mir, J., Dellunde, P., Paolucci, M.: Reputation-based decisions for logic-based cognitive agents. Auton. Agent. Multi-Agent Syst. 24, 175–216 (2012)CrossRefGoogle Scholar
  3. 3.
    Montaner, M., López, B., De La Rosa, J.L.: A taxonomy of recommender agents on the internet. Artif. Intell. Rev. 19, 285–330 (2003)CrossRefGoogle Scholar
  4. 4.
    Casali, A., Godo, L., Sierra, C.: Modeling travel assistant agents: a graded BDI approach. In: Bramer, M. (ed.) IFIP AI 2006. IIFIP, vol. 217, pp. 415–424. Springer, Heidelberg (2006). doi: 10.1007/978-0-387-34747-9_43 CrossRefGoogle Scholar
  5. 5.
    Casali, A., Godo, L., Sierra, C.: A tourism recommender agent: from theory to practice. Inteligencia artificial: Revista Iberoamericana de Inteligencia Artificial 12, 23–38 (2008)CrossRefGoogle Scholar
  6. 6.
    Casali, A., Godo, L., Sierra, C.: Validation and experimentation of a tourism recommender agent based on a graded BDI model. In: CCIA, pp. 41–50 (2008)Google Scholar
  7. 7.
    Casali, A., Godo, L., Sierra, C.: A graded BDI agent model to represent and reason about preferences. Artif. Intell. 175, 1468–1478 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Sabater-Mir, J., Cuadros, J., Garcia, P.: Towards a framework that allows using a cognitive architecture to personalize recommendations in e-commerce. In: EUMAS, pp. 3–17 (2013)Google Scholar
  9. 9.
    Bajo, J., De Luis, A., Gonzalez, A., Saavedra, A., Corchado, J.M.: A shopping mall multiagent system: ambient intelligence in practice. In: 2nd International Workshop on Ubiquitous Computing & Ambient Intelligence, pp. 115–125 (2006)Google Scholar
  10. 10.
    Vashisth, P., Bedi, P.: Interest-based personalized recommender system. In: 2011 World Congress on Information and Communication Technologies (WICT), pp. 245–250. IEEE (2011)Google Scholar
  11. 11.
    Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artif. Intell. 42, 213–261 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Rao, A.S., Georgeff, M.P., et al.: BDI agents: from theory to practice. In: ICMAS, vol. 95, pp. 312–319 (1995)Google Scholar
  13. 13.
    Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia methodology for agent-oriented analysis and design. Auton. Agents Multi-agent Syst. 3, 285–312 (2000)CrossRefGoogle Scholar
  14. 14.
    Singh, M.P.: Semantical considerations on intention dynamics for BDI agents. J. Exp. Theoret. Artif. Intell. 10, 551–564 (1998)CrossRefzbMATHGoogle Scholar
  15. 15.
    da Costa Pereira, C., Tettamanzi, A.G.: An integrated possibilistic framework for goal generation in cognitive agents. In: Proceedings of 9th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 1239–1246 (2010)Google Scholar
  16. 16.
    Negoita, C., Zadeh, L., Zimmermann, H.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Parsons, S., Jennings, N.R., Sabater, J., Sierra, C.: Agent specification using multi-context systems. In: d’Inverno, M., Luck, M., Fisher, M., Preist, C. (eds.) Foundations and Applications of Multi-Agent Systems. LNCS (LNAI), vol. 2403, pp. 205–226. Springer, Heidelberg (2002). doi: 10.1007/3-540-45634-1_13 CrossRefGoogle Scholar
  18. 18.
    da Costa Pereira, C., Tettamanzi, A.G.: Syntactic possibilistic goal generation. In: ECAI 2014–21st European Conference on Artificial Intelligence, vol. 263, pp. 711–716. IOS Press (2014)Google Scholar
  19. 19.
    Dubois, D., Prade, H.: Possibility theory and its applications: a retrospective and prospective view. In: Riccia, G.D., Dubois, D., Kruse, R., Lenz, H.-J. (eds.) Decision Theory and Multi-Agent Planning, vol. 482, pp. 89–109. Springer, Heidlelberg (2006). doi: 10.1007/3-211-38167-8_6 CrossRefGoogle Scholar
  20. 20.
    Paglieri, F., Castelfranchi, C., da Costa Pereira, C., Costa Pereira, C., Falcone, R., Tettamanzi, A., Villata, S.: Trusting the messenger because of the message: feedback dynamics from information quality to source evaluation. Comput. Math. Organ. Theory 20, 176–194 (2014)Google Scholar
  21. 21.
    Batet, M., Moreno, A., Sánchez, D., Isern, D., Valls, A.: Turist@: agent-based personalised recommendation of tourist activities. Expert Syst. Appl. 39, 7319–7329 (2012)CrossRefGoogle Scholar
  22. 22.
    Gruber, T.: Ontology. Encyclopedia of Database Systems, pp. 1963–1965 (2009)Google Scholar
  23. 23.
    Tisue, S., Wilensky, U.: Netlogo: A simple environment for modeling complexity. In: International Conference on Complex Systems, Boston, MA, vol. 21 (2004)Google Scholar
  24. 24.
    Bergenti, F., Caire, G., Gotta, D.: Agents on the move: JADE for android devices. In: Proceedings of Workshop From Objects to Agents (2014)Google Scholar
  25. 25.
    Jonker, C.M., Terziyan, V., Treur, J.: Temporal and spatial analysis to personalise an agent’s dynamic belief, desire, and intention profiles. In: Klusch, M., Omicini, A., Ossowski, S., Laamanen, H. (eds.) CIA 2003. LNCS (LNAI), vol. 2782, pp. 298–315. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-45217-1_22 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Amel Ben Othmane
    • 1
    Email author
  • Andrea Tettamanzi
    • 3
  • Serena Villata
    • 2
  • Nhan LE Thanh
    • 3
  • Michel Buffa
    • 3
  1. 1.WIMMICS Research Team, InriaSophia AntipolisFrance
  2. 2.CNRSSophia AntipolisFrance
  3. 3.Univ. Nice Sophia AntipolisSophia AntipolisFrance

Personalised recommendations