Combining Radiotherapy and Immunotherapy

  • Onyinye BalogunEmail author
  • Silvia C. Formenti
Part of the Cancer Treatment and Research book series (CTAR)


Traditionally, radiation therapy was viewed as a localized treatment to eliminate an “in field” tumor or metastasis or total body therapy, when used as a strategy to elicit immunosuppression in preparation for allogeneic transplant. Over the past decade, the purview of localized radiation therapy has been expanded to include a role as an adjuvant to immunotherapy. It is now recognized that radiation therapy to a tumor has the potential of converting it into an in situ vaccine, by releasing relevant epitopes and neo-antigens and inducing cell death signals that enable cross priming to activate tumor-specific T cells. Once successfully activated, the immune system contributes to the elimination of the irradiated tumor. If immunological memory is achieved, the patient’s immune system can also reject systemic metastases, outside the radiation field (the “abscopal effect”) and maintain durable tumor control. We summarize the current knowledge of radiation therapy’s effects on the immune system, including results from preclinical and clinical trials, as well as future directions in combining radiotherapy and immunotherapy.


Radiation therapy Radiotherapy Immunotherapy Abscopal effect Toll-like receptor PD-1, PD-L1 CTLA-4 OX40 CSF-1 CSF-1R 


  1. Adams S (2009) Toll-like receptor agonists in cancer therapy. Immunotherapy 1(6):949–964CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adams S et al (2012) Topical TLR7 agonist imiquimod can induce immune-mediated rejection of skin metastases in patients with breast cancer. Clin Cancer Res 18(24):6748–6757CrossRefPubMedPubMedCentralGoogle Scholar
  3. Apetoh L et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13(9):1050–1059CrossRefPubMedGoogle Scholar
  4. Aspeslagh S et al (2016) Rationale for anti-OX40 cancer immunotherapy. Eur J Cancer 52:50–66CrossRefPubMedGoogle Scholar
  5. Attiga FA et al (2000) Inhibitors of prostaglandin synthesis inhibit human prostate tumor cell invasiveness and reduce the release of matrix metalloproteinases. Cancer Res 60(16):4629–4637PubMedGoogle Scholar
  6. Bansal V, Ochoa JB (2003) Arginine availability, arginase, and the immune response. Curr Opin Clin Nutr Metab Care 6(2):223–228CrossRefPubMedGoogle Scholar
  7. Barcellos-Hoff MH et al (1994) Transforming growth factor-beta activation in irradiated murine mammary gland. J Clin Invest 93(2):892–899CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bos PD et al (2013) Transient regulatory T cell ablation deters oncogene-driven breast cancer and enhances radiotherapy. J Exp Med 210(11):2435–2466CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boucher JL, Moali C, Tenu JP (1999) Nitric oxide biosynthesis, nitric oxide synthase inhibitors and arginase competition for L-arginine utilization. Cell Mol Life Sci 55(8–9):1015–1028CrossRefPubMedGoogle Scholar
  10. Bouquet F et al (2011) TGFbeta1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clin Cancer Res 17(21):6754–6765CrossRefPubMedPubMedCentralGoogle Scholar
  11. Brody JD et al (2010) In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. J Clin Oncol 28(28):4324–4332CrossRefPubMedPubMedCentralGoogle Scholar
  12. Burgess AW, Metcalf D (1980) The nature and action of granulocyte-macrophage colony stimulating factors. Blood 56(6):947–958PubMedGoogle Scholar
  13. Chakraborty M et al (2003) Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J Immunol 170(12):6338–6347CrossRefPubMedGoogle Scholar
  14. Chang CI, Liao JC, Kuo L (2001) Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity. Cancer Res 61(3):1100–1106PubMedGoogle Scholar
  15. Chen J et al (2012) Interferon-gamma-induced PD-L1 surface expression on human oral squamous carcinoma via PKD2 signal pathway. Immunobiology 217(4):385–393CrossRefPubMedGoogle Scholar
  16. Demaria S et al (2004) Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys 58(3):862–870CrossRefPubMedGoogle Scholar
  17. Demaria S et al (2005) Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res 11(2 Pt 1):728–734PubMedGoogle Scholar
  18. Demaria S et al (2013) The TLR7 agonist imiquimod as an adjuvant for radiotherapy-elicited in situ vaccination against breast cancer. Oncoimmunology 2(10):e25997CrossRefPubMedPubMedCentralGoogle Scholar
  19. DeNardo DG et al (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1(1):54–67CrossRefPubMedPubMedCentralGoogle Scholar
  20. Deng L et al (2014) STING-dependent cytosolic DNA sensing promotes radiation-induced type i interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41(5):843–852CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dewan MZ et al (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15(17):5379–5388CrossRefPubMedPubMedCentralGoogle Scholar
  22. Dewan MZ et al (2012) Synergy of topical toll-like receptor 7 agonist with radiation and low-dose cyclophosphamide in a mouse model of cutaneous breast cancer. Clin Cancer Res 18(24):6668–6678CrossRefPubMedPubMedCentralGoogle Scholar
  23. Diamond MS et al (2011) Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med 208(10):1989–2003CrossRefPubMedPubMedCentralGoogle Scholar
  24. Formenti SC, Demaria S (2012) Radiation therapy to convert the tumor into an in situ vaccine. Int J Radiat Oncol Biol Phys 84(4):879–880CrossRefPubMedGoogle Scholar
  25. Fuertes MB et al (2011) Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha} + dendritic cells. J Exp Med 208(10):2005–2016CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fujita H et al (2002) Cyclooxygenase-2 promotes prostate cancer progression. Prostate 53(3):232–240CrossRefPubMedGoogle Scholar
  27. Galluzzi L et al (2007) Cell death modalities: classification and pathophysiological implications. Cell Death Differ 14(7):1237–1243CrossRefPubMedGoogle Scholar
  28. Ghiringhelli F et al (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 15(10):1170–1178CrossRefPubMedGoogle Scholar
  29. Golden EB, Formenti SC (2014) Is tumor (R)ejection by the immune system the “5th R” of radiobiology? Oncoimmunology 3(1):e28133CrossRefPubMedPubMedCentralGoogle Scholar
  30. Golden EB et al (2013) An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol Res 1(6):365–372CrossRefPubMedPubMedCentralGoogle Scholar
  31. Golden EB et al (2015) Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol 16(7):795–803CrossRefPubMedGoogle Scholar
  32. Gough MJ et al (2010) Adjuvant therapy with agonistic antibodies to CD134 (OX40) increases local control after surgical or radiation therapy of cancer in mice. J Immunother 33(8):798–809CrossRefPubMedPubMedCentralGoogle Scholar
  33. Grimaldi AM et al (2014) Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy. Oncoimmunology 3:e28780CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gulley JL et al (2005) Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer. Clin Cancer Res 11(9):3353–3362CrossRefPubMedGoogle Scholar
  35. Hasmim M et al (2013) Cutting edge: Hypoxia-induced Nanog favors the intratumoral infiltration of regulatory T cells and macrophages via direct regulation of TGF-beta1. J Immunol 191(12):5802–5806CrossRefPubMedGoogle Scholar
  36. Hiniker SM et al (2012) A systemic complete response of metastatic melanoma to local radiation and immunotherapy. Transl Oncol 5(6):404–407CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ino Y et al (2013) Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br J Cancer 108(4):914–923CrossRefPubMedPubMedCentralGoogle Scholar
  38. Jenkins DC et al (1995) Roles of nitric oxide in tumor growth. Proc Natl Acad Sci U S A 92(10):4392–4396CrossRefPubMedPubMedCentralGoogle Scholar
  39. Joyce JA, Fearon DT (2015) T cell exclusion, immune privilege, and the tumor microenvironment. Science 348(6230):74–80CrossRefPubMedGoogle Scholar
  40. Kim JY et al (2006) Increase of NKG2D ligands and sensitivity to NK cell-mediated cytotoxicity of tumor cells by heat shock and ionizing radiation. Exp Mol Med 38(5):474–484CrossRefPubMedGoogle Scholar
  41. Kjaergaard J et al (2005) Active immunotherapy for advanced intracranial murine tumors by using dendritic cell-tumor cell fusion vaccines. J Neurosurg 103(1):156–164CrossRefPubMedGoogle Scholar
  42. Klug F et al (2013) Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24(5):589–602CrossRefPubMedGoogle Scholar
  43. Kroemer A et al (2007) OX40 controls functionally different T cell subsets and their resistance to depletion therapy. J Immunol 179(8):5584–5591CrossRefPubMedGoogle Scholar
  44. Kuo P et al (2014) Galectin-1 mediates radiation-related lymphopenia and attenuates NSCLC radiation response. Clin Cancer Res 20(21):5558–5569CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lee Y et al (2009) Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood 114(3):589–595CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lei F et al (2013) Regulation of A1 by OX40 contributes to CD8(+) T cell survival and anti-tumor activity. PLoS ONE 8(8):e70635CrossRefPubMedPubMedCentralGoogle Scholar
  47. Li J et al (2007) Lymphoma immunotherapy with CpG oligodeoxynucleotides requires TLR9 either in the host or in the tumor itself. J Immunol 179(4):2493–2500CrossRefPubMedGoogle Scholar
  48. Lugade AA et al (2005) Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol 174(12):7516–7523CrossRefPubMedGoogle Scholar
  49. Lugade AA et al (2008) Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol 180(5):3132–3139CrossRefPubMedGoogle Scholar
  50. Ma Y et al (2010) Chemotherapy and radiotherapy: cryptic anticancer vaccines. Semin Immunol 22(3):113–124CrossRefPubMedGoogle Scholar
  51. Marabelle A et al (2013) Depleting tumor-specific Tregs at a single site eradicates disseminated tumors. J Clin Invest 123(6):2447–2463CrossRefPubMedPubMedCentralGoogle Scholar
  52. Matsumura S et al (2008) Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol 181(5):3099–3107CrossRefPubMedPubMedCentralGoogle Scholar
  53. Newcomb EW et al (2006) The combination of ionizing radiation and peripheral vaccination produces long-term survival of mice bearing established invasive GL261 gliomas. Clin Cancer Res 12(15):4730–4737CrossRefPubMedGoogle Scholar
  54. Obeid M et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13(1):54–61CrossRefPubMedGoogle Scholar
  55. Park HJ et al (2012) Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Radiat Res 177(3):311–327CrossRefPubMedGoogle Scholar
  56. Pilones KA et al (2014) Invariant natural killer T cells regulate anti-tumor immunity by controlling the population of dendritic cells in tumor and draining lymph nodes. J Immunother Cancer 2(1):37CrossRefPubMedPubMedCentralGoogle Scholar
  57. Postow MA et al (2012) Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 366(10):925–931CrossRefPubMedPubMedCentralGoogle Scholar
  58. Pyonteck SM et al (2012) Deficiency of the macrophage growth factor CSF-1 disrupts pancreatic neuroendocrine tumor development. Oncogene 31(11):1459–1467CrossRefPubMedGoogle Scholar
  59. Reits EA et al (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203(5):1259–1271CrossRefPubMedPubMedCentralGoogle Scholar
  60. Rodriguez PC et al (2003) L-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes. J Immunol 171(3):1232–1239CrossRefPubMedGoogle Scholar
  61. Ruby CE et al (2008) IL-12 is required for anti-OX40-mediated CD4 T cell survival. J Immunol 180(4):2140–2148CrossRefPubMedGoogle Scholar
  62. Ruby CE et al (2009) Cutting edge: OX40 agonists can drive regulatory T cell expansion if the cytokine milieu is right. J Immunol 183(8):4853–4857CrossRefPubMedPubMedCentralGoogle Scholar
  63. Ruocco MG et al (2012) Suppressing T cell motility induced by anti-CTLA-4 monotherapy improves antitumor effects. J Clin Invest 122(10):3718–3730CrossRefPubMedPubMedCentralGoogle Scholar
  64. Stafford JH et al (2016) Colony stimulating factor 1 receptor inhibition delays recurrence of glioblastoma after radiation by altering myeloid cell recruitment and polarization. Neuro Oncol 18(6):797–806CrossRefPubMedGoogle Scholar
  65. Stanley MA (2002) Imiquimod and the imidazoquinolones: mechanism of action and therapeutic potential. Clin Exp Dermatol 27(7):571–577CrossRefPubMedGoogle Scholar
  66. Stout RD et al (2005) Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 175(1):342–349CrossRefPubMedGoogle Scholar
  67. Templeton AJ et al (2014) Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst 106(6): p. dju124Google Scholar
  68. Tsai CS et al (2007) Macrophages from irradiated tumors express higher levels of iNOS, arginase-I and COX-2, and promote tumor growth. Int J Radiat Oncol Biol Phys 68(2):499–507CrossRefPubMedGoogle Scholar
  69. Twyman-Saint Victor C et al (2015) Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520(7547):373–377CrossRefPubMedGoogle Scholar
  70. Vanpouille-Box C et al (2015) TGFbeta is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res 75(11):2232–2242CrossRefPubMedPubMedCentralGoogle Scholar
  71. Vollmer J et al (2004) Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur J Immunol 34(1):251–262CrossRefPubMedGoogle Scholar
  72. Vu MD et al (2007) OX40 costimulation turns off Foxp3 + Tregs. Blood 110(7):2501–2510CrossRefPubMedPubMedCentralGoogle Scholar
  73. Wang W, Bergh A, Damber JE (2005) Cyclooxygenase-2 expression correlates with local chronic inflammation and tumor neovascularization in human prostate cancer. Clin Cancer Res 11(9):3250–3256CrossRefPubMedGoogle Scholar
  74. Woo SR et al (2014) STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41(5):830–842CrossRefPubMedPubMedCentralGoogle Scholar
  75. Wooldridge JE, Weiner GJ (2003) CpG DNA and cancer immunotherapy: orchestrating the antitumor immune response. Curr Opin Oncol 15(6):440–445CrossRefPubMedGoogle Scholar
  76. Wrzesinski SH, Wan YY, Flavell RA (2007) Transforming growth factor-beta and the immune response: implications for anticancer therapy. Clin Cancer Res 13(18 Pt 1):5262–5270CrossRefPubMedGoogle Scholar
  77. Xu J et al (2013) CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res 73(9):2782–2794CrossRefPubMedPubMedCentralGoogle Scholar
  78. Yang KL et al (2013) Reciprocal complementation of the tumoricidal effects of radiation and natural killer cells. PLoS ONE 8(4):e61797CrossRefPubMedPubMedCentralGoogle Scholar
  79. Yokouchi H et al (2008) Anti-OX40 monoclonal antibody therapy in combination with radiotherapy results in therapeutic antitumor immunity to murine lung cancer. Cancer Sci 99(2):361–367CrossRefPubMedGoogle Scholar
  80. Zeng J et al (2013) Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 86(2):343–349CrossRefPubMedPubMedCentralGoogle Scholar
  81. Zhu Y et al (2014) CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res 74(18):5057–5069CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Radiation OncologyNew YorkUSA

Personalised recommendations