Advertisement

Progress in Nanomaterials Applications for Water Purification

  • Diana SanninoEmail author
  • Luigi Rizzo
  • Vincenzo Vaiano
Chapter

Abstract

The exploration on nanomaterials and their fascinating and enhanced properties has implicated the focusing on their applications embracing a wide range of processes on nanometer scale. In this perspective, nanotechnology  in water treatment applications is offering  and presenting now new approaches to overcome the limitations of the traditional treatment technologies. This chapter describes several types of nanomaterials that could be used in wastewater treatment underlining their advantages with respect the traditional systems.

Keywords

Nanomaterials Wastewater treatment Innovative systems 

References

  1. Ahmed F, Santos CM, Vergara RAMV, Tria MCR, Advincula R, Rodrigues DF (2012) Antimicrobial applications of electroactive PVK-SWNT nanocomposites. Environ Sci Technol 46(3):1804–1810CrossRefGoogle Scholar
  2. Ambashta RD, Sillanpää M (2010) Water purification using magnetic assistance: a review. J Hazard Mater 180:38–49Google Scholar
  3. Amin MT, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng 2014:1–24Google Scholar
  4. Amini M, Jahanshahi M, Rahimpour A (2013) Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes. J Membr Sci 435(233–41):241Google Scholar
  5. Bae ST, Chung KW (2012) Method for preparing engineered Mg doped ferrite superparamagnetic nano particle exhibiting Ac magnetic induction heating at high temperature and Mg doped ferrite superparamagnetic nano particles engineered by the method. In: PCT/KR 2009-007801, PCT/USA 13/141,844, PCT/Japan/2011-543434, PCTEurope/2011-234291, PCT/China/200980152546. 6, Nuri Vista Co., Ltd., Seoul, KR, 2012, assignedGoogle Scholar
  6. Balogh L, Swanson DR, Tomalia DA, Hagnauer GL, McManus AT (2001) Dendrimer-silver complexes and nanocomposites as antimicrobial agents. Nano Lett 1(1):18–21Google Scholar
  7. Bavasso I, Vilardi G*, Stoller M, Chianese A, Di Palma L (2016) Perspectives in nanotechnology based innovative applications for the environment. Chem Eng Trans 47:55–60Google Scholar
  8. Bhatnagar A, Sillanpää M (2011) A review of emerging adsorbents for nitrate removal from water. Chem Eng J 168(2):493–504Google Scholar
  9. Botes M, Cloete TE (2010) The potential of nanofibers and nanobiocides in water purification. Crit Rev Microbiol 36(1):68–81Google Scholar
  10. Brady-Estévez AS, Kang S, Elimelech M (2008) A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens. Small 4(4):481–484Google Scholar
  11. Mueller N, Braun J, Bruns, J, Cernik M, Rissing P, Rickerby D, Nowack B (2012) Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res 19(2012):550–558Google Scholar
  12. Carraro G, Maccato C, Gasparotto A, Montini T, Turner S, Lebedev OI, Gombac V, Adami G, Van Tendeloo G, Barreca D, Fornasiero P (2014) Enhanced hydrogen production by photoreforming of renewable oxygenates through nanostructured Fe2O3 polymorphs. Adv Funct Mater 24:372–378Google Scholar
  13. Chen Y, Wang L, Jiang S, Yu HJ (2003) Study on novel antibacterial polymer materials materials (I) preparation of zeolite antibacterial agents and antibacterial polymer composite and their antibacterial properties. J Polym Mater 20(3):279–284Google Scholar
  14. Choi J-H, Jegal J, Kim W-N (2006) Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes. J Membr Sci 284(1):406–415Google Scholar
  15. Clarizi L, Vitiello G, Luciani G, Di Somma I, Andreozzi R, Marotta R (2016) In situ photodeposited nanoCu on TiO2 as a catalyst for hydrogen production under UV/visible radiation. Appl Catal A: Gen 518:142–149. doi: 10.1016/j.apcata.2015.07.044
  16. Clark KK, Keller A (2012) Investigation of two magnetic permanently confined micelle array sorbents using nonionic and cationic surfactants for the removal of PAHs and pesticides from aqueous media. Water Air Soil Pollut 223:3647–3655Google Scholar
  17. Crespi J, Quici N, Halac EB, Leyva AG, Ramosb CP, Mizrahi M, Requejo FG, Litter MI (2016) Removal of uranium (VI) with iron nanoparticles. CET 47Google Scholar
  18. Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30(1):38–70Google Scholar
  19. Danilczuk M, Lund A, Sadlo J, Yamada H, Michalik J (2006) Conduction electron spin resonance of small silver particles. Spectrochimica Acta—Part A: Mole Biomole Spectro 63(1):189–191Google Scholar
  20. De Caprariis B, Di Rita M, Stoller M, Verdone N, Chianese A (2012) Reaction-precipitation by a spinning disc reactor: influence of hydrodynamics on nanoparticles production. Chem Eng Sci 76:73–80Google Scholar
  21. Fan L, Luo C, Sun M, Li X, Qiu H (2013) Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids Surf B: Biointerface 103:523–959Google Scholar
  22. Fritzmann C, Löwenberg T, Wintgens T, Melin T (2007) State-of-the-art of reverse osmosis desalination. Desalination 216(1–3):1–76Google Scholar
  23. Ghasemzadeh G, Momenpour M, Omidi F, Hosseini MR, Ahani M, Barzegari A (2014) Applications of nanomaterials in water treatment and environmental remediation. Front Environ Sci Eng 8:471–482Google Scholar
  24. Girginova PI, Daniel-da-Silva AL, Lopes CB, Figueira P, Otero M, Amaral VS, Pereira E, Trindade T (2010) Silica coated magnetite particles for magnetic removal of Hg2+ from water. J Colloid Interface Sci 345:234–240Google Scholar
  25. Gombac V, Sordelli L, Montini T, Delgado JJ, Adamski A, Adami V, Cargnello V, Bernal S, Fornasiero P (2010) CuOx−TiO2 photocatalysts for H2 production from ethanol and glycerol solutions. J Phys Chem A 114:3916–577Google Scholar
  26. Han Y, Liu C, Horita J, Yan W (2016) Trichloroethene hydrodechlorination by Pd–Fe bimetallic nanoparticles: solute-induced catalyst deactivation analyzed by carbon isotope fractionation Appl. Catal. B: Environ 188:77–86CrossRefGoogle Scholar
  27. Hu W, Peng C, Luo W, Lv M, Li X, Li D et al (2010) Graphene-based antibacterial paper. ACS Nano 4(7):4317–234323Google Scholar
  28. Huang SH, Chen DH (2009) Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J Hazard Mater 163:174–179CrossRefGoogle Scholar
  29. Iervolino G, Vaiano V, Sannino D, Rizzo L, Ciambelli P (2016) Production of hydrogen from glucose by LaFeO3 based photocatalytic process during water treatment (2016). Int J Hydrogen Energy 41(2):959–966. doi: 10.1016/j.ijhydene.2015.10.085 CrossRefGoogle Scholar
  30. Jiang D-E, Cooper VR, Dai S (2009) Porous graphene as the ultimate membrane for gas separation. Nano Lett 9(12):4019–4024Google Scholar
  31. Joshi RK, Carbone P, Wang FC, Kravets VG, Su Y, Grigorieva IV et al (2014) Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343(6172):752–754Google Scholar
  32. Kamat PV, Huehn R, Nicolaescu R (2002) A “sense and shoot” approach for photocatalytic degradation of organic contaminants in water. J Phys Chem B 106(4):788–794Google Scholar
  33. Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117(2009):1823–1831Google Scholar
  34. Kaur R, Hasan A, Iqbal N, Alam S, Saini MK, Raza SK (2014) Synthesis and surface engineering of magnetic nanoparticles for environmental cleanup and pesticide residue analysis: a review. J Sep Sci 37(14):1805–1825Google Scholar
  35. Kim JS, Kuk E, Yu KN et al (2007) Antimicrobial effects of silver nanoparticles. Nanomed: Nanotechnol Biol Med 3(1):95–101Google Scholar
  36. Kim Y-M, Murugesan K, Chang Y-Y, Kim E-J, Chang YS (2012) Degradation of polybrominated diphenyl ethers by a sequential treatment with nanoscale zero valent iron and aerobic biodegradation. J Chem Technol Biotechnol 87:216–224Google Scholar
  37. Lacinova L, Kvapil P, Cernik M (2012) A field comparison of two reductive dechlorination (zero-valent iron and lactate) methods. Environ Technol 33(2012):741–749Google Scholar
  38. Lam SM, Sin JC, Abdullah AZ, Mohamed AR (2013) Efficient photodegradation of resorcinol with Ag2O/ZnO nanorods heterostructure under a compact fluorescent lamp irradiation. Chem. Pap 67:1277–1284Google Scholar
  39. Lee HS, Im SJ, Kim JH, Kim HJ, Kim JP, Min BR (2008) Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles. Desalination 219(1–3):48–56Google Scholar
  40. Li L, Dong J, Nenoff TM, Lee R (2004) Desalination by reverse osmosis using MFI zeolite membranes. J Membr Sci 243(1–2):401–404Google Scholar
  41. Li Y-H, Di Z, Ding J, Wu D, Luan Z, Zhu Y (2005) Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res 39(4):605–609Google Scholar
  42. Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D et al (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602Google Scholar
  43. Li Z, Gao B, Chen GZ, Mokaya R, Sotiropoulos S, Li Puma G (2011) Carbon nanotube/titanium dioxide (CNT/TiO2) core–shell nanocomposites with tailored shell thickness, CNT content and photocatalytic/photoelectrocatalytic properties. Appl Catal B 110:50–757Google Scholar
  44. Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 25(4):279–283Google Scholar
  45. Liu J-F, Zhao Z-S, Jiang G-B (2008) Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol 42:6949–6954Google Scholar
  46. Liu Y, Li H, Lin JM (2009) Magnetic solid-phase extraction based on octadecyl functionalization of monodisperse magnetic ferrite microspheres for the determination of polycyclic aromatic hydrocarbons in aqueous samples coupled with gas chromatography-mass spectrometry. Talanta 77:1037–1042Google Scholar
  47. Liu J, Bin Y, Matsuo M (2012) Magnetic behavior of Zn-doped Fe3O4 nanoparticles estimated in terms of crystal domain size. J Phys Chem C 116:134–143Google Scholar
  48. Liu F, Chung S, Oh G, Seo TS (2012) Three-dimensional graphene oxide nanostructure for fast and efficient water-soluble dye removal. ACS Appl Mater Interfaces 4(2):922–927Google Scholar
  49. Ma L, Chen A, Lu J, Zhang Z, He H, Li C (2014) In situ synthesis of CNTs/Fe–Ni/TiO2 nanocomposite by fluidized bed chemical vapor deposition and the synergistic effect in photocatalysis. Particuology 14:24–32Google Scholar
  50. Madadrang CJ, Kim HY, Gao G, Wang N, Zhu J, Feng H et al (2012) Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS Appl Mater 4(3):1186–1193Google Scholar
  51. Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A (2005) Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Adv Funct Mater 15(10):1708–1715Google Scholar
  52. Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42(16):5843–5859Google Scholar
  53. Mehta D, Mazumdar S, Singh SK (2015) Magnetic adsorbents for the treatment of water/wastewater—a review. J Water Process Eng 7:244–265Google Scholar
  54. Miranda AC, Lepretti M, Rizzo L, Caputo I, Vaiano V, Sacco O, Lopes WS, Sannino D (2016) Surface water disinfection by chlorination and advanced oxidation processes: inactivation of an antibiotic resistant E. coli strain and cytotoxicity evaluation (2016). Sci Total Environ 554–555:1–6. doi: 10.1016/j.scitotenv.2016.02.189 CrossRefGoogle Scholar
  55. Mohsen MS, Jaber JO, Afonso MD (2003) Desalination of brackish water by nanofiltration and reverse osmosis. Desalination 157(1–3):167Google Scholar
  56. Montesinos VN, Quici N, Halac EB, Leyva AG, Custo G, Bengio S, Zampieri G, Litter MI (2014) Highly efficient removal of Cr(VI) from water with nanoparticulated zerovalent iron: understanding the Fe(III)-Cr(III) passive outer layer structure. Chem Eng J 244:569–575CrossRefGoogle Scholar
  57. Montini T, Gombac V, Sordelli L, Delgado JJ, Chen X, Adami G, Fornasiero P (2011) Nanostructured Cu/TiO2 photocatalysts for H2 production from ethanol and glycerol aqueous solutions. ChemCatChem 3:574Google Scholar
  58. Morones JR, Elechiguerra JL, Camacho A et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353CrossRefGoogle Scholar
  59. Musico, YLF, Santos C, Dalida M, Rodrigues DF (2014) Surface modification of membrane filters using graphene and graphene oxide-based nanomaterials for bacterial inactivation and removal. ACS Sustain Chem Eng 2(7):1559–1565Google Scholar
  60. Ngomsik A-F, Bee A, Draye M, Cote G, Cabuil V (2005) Magnetic nano-and microparticles for metal removal and environmental applications: a review. Comptes Rendus Chimie 8:963–970Google Scholar
  61. Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL, Driessen MD (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39:1221–1230Google Scholar
  62. O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour 51:104–122CrossRefGoogle Scholar
  63. Ohtani B (2013) Titania photocatalysis beyond recombination: a critical review. Catalysts 3:942CrossRefGoogle Scholar
  64. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720Google Scholar
  65. Peter-Varbanets M, Zurbrügg C, Swartz C, Pronk W (2009) Decentralized systems for potable water and the potential of membrane technology. Water Res 43(2):245–265Google Scholar
  66. Rajan CS (2011) Nanotechnology in groundwater remediation. Int J Environ Sci Dev 2:1–6Google Scholar
  67. Reddy DHK, Yun Y-S (2016) Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coord Chem Rev 315:90–111Google Scholar
  68. Rizzo L, Sannino D, Vaiano V, Sacco O, Scarpa A, Pietrogiacomi D (2014) Effect of solar simulated N-doped TiO2 photocatalysis on the inactivation and antibiotic resistance of an E. coli strain in biologically treated urban wastewater. Appl Catal B 144:369–378. doi: 10.1016/j.apcatb.2013.07.033 CrossRefGoogle Scholar
  69. Sacco O (2015) Photocatalytic oxidation of organic pollutants under visible light irradiation: from n-doped TiO2 photocatalysts to the design of a continuous fixed bed reactor. Ph.D. Thesis in Chemical Engineering, University of SalernoGoogle Scholar
  70. Sacco O, Vaiano V, Han C, Sannino D, Dionysiou DD, Ciambelli P (2015a) Long afterglow green phosphors functionalized with Fe-N doped TiO2 for the photocatalytic removal of emerging contaminants (2015). Chem Eng Trans 43:2107–2112. doi: 10.3303/CET1543352 Google Scholar
  71. Sacco O, Vaiano V, Han C, Sannino D, Dionysiou DD (2015b) Photocatalytic removal of atrazine using N-doped TiO2 supported on phosphors (2015). Appl Catal B 164:462–474. doi: 10.1016/j.apcatb.2014.09.062 CrossRefGoogle Scholar
  72. Saleh TA, Gondal MA, Drmosh QA, Yamani ZH, Al-Yamani A (2011) Enhancement in photocatalytic activity for acetaldehyde removal by embedding ZnO nano particles on multiwall carbon nanotubes. Chem Eng J 166(1):407–412Google Scholar
  73. Santos CM, Tria MCR, Vergara RAMV, Ahmed F, Advincula RC, Rodrigues DF (2011) Antimicrobial graphene polymer (PVK-GO) nanocomposite films. Chem Commun 47(31):8892–8894Google Scholar
  74. Santos CM, Mangadlao J, Ahmed F, Leon A, Advincula RC, Rodrigues DF (2012) Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations. Nanotechnology 23(39):395101Google Scholar
  75. Sato S (1986) Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chem Phys Lett 123:126–128CrossRefGoogle Scholar
  76. Shen YF, Tang J, Nie ZH, Wang YD, Ren Y, Zuo L (2009) Tailoring size and structural distortion of Fe3O4 nanoparticles for the purification of contaminated water. Bioresource Technol 100:4139–4146Google Scholar
  77. Shirinova H, Di Palma L, Sarasini F, Tirillò J, Ramazanov MA, Hajiyeva F, Sannino D, Polichetti M, Galluzzi A (2016) Synthesis and characterization magnetic nanocomposites for environmental remediation. Chem Eng Trans 47:103–108Google Scholar
  78. Siegel RW (1994) Nanophase materials. In: Trigg GL (ed) Encyclopedia of applied physics, vol 11. VCH, Weinheim, pp 1–27Google Scholar
  79. Smith SC, Ahmed F, Gutierrez KM, Frigi Rodrigues D (2014) A comparative study of lysozyme adsorption with graphene, graphene oxide, and single-walled carbon nanotubes: potential environmental applications. Chem Eng J 240:147–154Google Scholar
  80. Srivastava A, Srivastava ON, Talapatra S, Vajtai R, Ajayan PM (2004) Carbon nanotube filters. Nat Mater 3(9):610–614Google Scholar
  81. Stevens MM, George JH (2005) Science, exploring and engineering the cell surface interface. Science 310:1135–1138Google Scholar
  82. Tang SCN, Lo IMC (2013) Magnetic nanoparticles: essential factors for sustainable environmental applications. Wat Res 47:2613–2632Google Scholar
  83. Tang Y, Guo H, Xiao L, Yu S, Gao N, Wang Y (2013) Synthesis of reduced graphene oxide/magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics. Colloids Surf A Physicochem Eng Aspects 424:74–80Google Scholar
  84. Taylor Eighmy T, Robin Collins M, Spanos SK, Fenstermacher J (1992) Microbial populations, activities and carbon metabolism in slow sand filters. Water Res 26(10):1319–1328Google Scholar
  85. Ullah R, Dutta J (2008) Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J Hazard Mater 156:194–200Google Scholar
  86. Upadhyayula VKK, Gadhamshetty V (2010) Appreciating the role of carbon nanotube composites in preventing biofouling and promoting biofilms on material surfaces in environmental engineering: a review. Biotechnol Adv 28(6):802–816Google Scholar
  87. Vaiano V, Sacco O, Sannino D, Ciambelli P, Longo S, Venditto V, Guerra G (2014) N-doped TiO2/s-PS aerogels for photocatalytic degradation of organic dyes in wastewater under visible light irradiation. J Chem Technol Biotechnol 89(8):1175–1181. doi: 10.1002/jctb.4372 CrossRefGoogle Scholar
  88. Vaiano V, Iervolino G, Sarno G, Sannino D, Rizzo L, Mesa JJM, Hidalgo MC, Navío JA (2015) Simultaneous production of CH4 and H2 from photocatalytic reforming of glucose aqueous solution on sulfated Pd-TiO2 catalysts. Oil Gas Sci Technol 70:891–902Google Scholar
  89. Vaiano V, Sacco O, Sannino D, Ciambelli P (2015b) Photocatalytic removal of spiramycin from wastewater under visible light with N-doped TiO2 photocatalysts. Chem Eng J 261:3–8. doi: 10.1016/j.cej.2014.02.071 CrossRefGoogle Scholar
  90. Vaiano V, Sacco O, Sannino D, Ciambelli P (2015c) Process intensification in the removal of organic pollutants from wastewater using innovative photocatalysts obtained coupling Zinc Sulfide based phosphors with nitrogen doped semiconductors (2015). J Clean Prod 100:208–211. doi: 10.1016/j.jclepro.2015.03.041 CrossRefGoogle Scholar
  91. Vaiano V, Iervolino G, Sannino D, Murcia JJ, Hidalgo MC, Ciambelli P, Navío JA (2016a) Photocatalytic removal of patent blue V dye on Au–TiO2 and Pt–TiO2 catalysts. Appl Catal B 188:134–146. doi: 10.1016/j.apcatb.2016.02.001 CrossRefGoogle Scholar
  92. Vaiano V*, Saccoa V, Sannino D, Stollerb M, Ciambelli P, Chianese A (2016) Photocatalytic removal of phenol ferromagnetic N-TiO2/SiO2/Fe3O4 nanoparticles in presence of visible light irradiation. Chem Eng Trans 47:235–240Google Scholar
  93. Vatanpour V, Madaeni SS, Moradian R, Zinadini S, Astinchap B (2011) Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. J Membr Sci 375(1):284–294Google Scholar
  94. Wang S, Sun H, Ang H-M, Tadé MO (2013) Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem Eng J 226:336–47347Google Scholar
  95. Wang P, Shi Q, Shi Y, Clark KK, Stucky GD, Keller AA (2008) Magnetic permanently confined micelle arrays for treating hydrophobic organic compound contamination. J Am Chem Soc 131:182–188Google Scholar
  96. Wang L, Zhu D, Duan L, Chen W (2010) Adsorption of single-ringed N-and S-heterocyclic aromatics on carbon nanotubes. Carbon 48(13):3906–3915Google Scholar
  97. Wang C, Feng C, Gao Y, Ma X, Wu Q, Wang Z (2011) Preparation of a graphene-based magnetic nanocomposite for the removal of an organic dye from aqueous solution. Chem Eng J 173(1):92–97CrossRefGoogle Scholar
  98. Wu Q, Zhao G, Feng C, Wang C, Wang Z (2011) Preparation of a graphene-based magnetic nanocomposite for the extraction of carbamate pesticides from environmental water samples. J Chromatogr A 1218(44):7936–7942CrossRefGoogle Scholar
  99. Xiu Z-M, Ma JZ, Alvarez PJ (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45(20):9003–9008Google Scholar
  100. Yang S-T, Chen S, Chang Y, Cao A, Liu Y, Wang H (2011) Removal of methylene blue from aqueous solution by graphene oxide. J Colloid Interface Sci 359(1):24–929Google Scholar
  101. Zhang W (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332CrossRefGoogle Scholar
  102. Zhang S, Niu H, Cai Y, Shi Y (2010) Barium alginate caged Fe3O4@C18 magnetic nanoparticles for the pre-concentration of polycyclic aromatic hydrocarbons and phthalate esters from environmental water samples. Anal Chim Acta 665:167–175Google Scholar
  103. Zhu J, Wei S, Chen M, Gu H, Rapole SB, PallavkarS, Ho TC, Hopper J, Guo Z (2013) Magnetic nanocomposites for environmental remediation. Adv Powder Technol 24:459–467Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Industrial EngineeringUniversity of SalernoFiscianoItaly
  2. 2.Department of Civil EngineeringUniversity of SalernoFiscianoItaly

Personalised recommendations