Advertisement

Immunotherapy in NSCLC: A Promising and Revolutionary Weapon

  • Christian Rolfo
  • Christian Caglevic
  • Mariacarmela Santarpia
  • Antonio Araujo
  • Elisa Giovannetti
  • Carolina Diaz Gallardo
  • Patrick Pauwels
  • Mauricio Mahave
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 995)

Abstract

Lung cancer is the leader malignancy worldwide accounting 1.5 millions of deaths every year. In the United States the 5 year-overall survival is less than 20% for all the newly diagnosed patients. Cisplatin-based cytotoxic chemotherapy for unresectable or metastatic NSCLC patients in the first line of treatment, and docetaxel in the second line, have achieved positive results but with limited benefit in overall survival. Targeted therapies for EGFR and ALK mutant patients have showed better results when compared with chemotherapy, nevertheless most of patients will fail and need to be treated with chemotherapy if they still have a good performance status.

Immunotherapy recently has become the most revolutionary treatment in solid tumors patients. First results in unresectable and metastatic melanoma patients treated with an anti CTLA-4 monoclonal antibody showed an unexpected 3-year overall survival of at least 25%.

Lung cancer cells have multiple immunosuppressive mechanisms that allow to escape of the immune system and survive, however blocking CTLA-4 pathway with antibodies as monotherapy treatment have not achieved same results than in melanoma patients. PD-1 expression has been demonstrated in different tumor types, suggesting than PD-1 / PD-L1 pathway is a common mechanism used by tumors to avoid immune surveillance and favoring tumor growth. Anti PD-1 and anti PD-L1 antibodies have showed activity in non-small cell lung cancer patients with significant benefit in overall survival, long lasting responses and good safety profile, including naïve and pretreated patients regardless of the histological subtype. Even more, PD-1 negative expression patients achieve similar results in overall survival when compared with patients treated with chemotherapy. In the other side high PD-1 expression patients that undergo immunotherapy treatment achieve better results in terms of survival with lesser toxicity. Combining different immunotherapy treatments, combination of immunotherapy with chemotherapy or with targeted treatment are under research with some promising PRELIMINARY results in non-small cell lung cancer patients.

This chapter attempts to summarize the development of immunotherapy treatment in non-small cell lung cancer patients and explain the results that have leaded immunotherapy as a new standard of treatment in selected NSCLC patients.

Keywords

Immunotherapy PDL1 PD1 NSCLC Immune checkpoints 

Notes

Acknowledgments

Thanks to Dr. Rodolfo Mauceri for his contribution for the images for this chapter.

Disclosures

Authors declare not commercial funding, not honoraria for this manuscript and not participation direct or indirectly by pharmaceutical industry.

Authors declare personal disclosures that could be considered of interest regarding the content of the chapter.

Christian Rolfo: Novartis speaker bureau, Mylan scientific advisor, Sanfo research grant, Precision Medicine: Steering committee.

Christian Caglevic: Principal investigator for clinical trials in NSCLC with immunotherapy drugs (MSD, AZ) and subinvestigator (BMS). Speaker (BMS and MSD), Advisory board (MSD–AZ), Consultant (BMS–MSD), Courses and transportation financial (BMS)

María Carmela Santarpia: not disclosures.

Antonio Araujo: not disclosures.

Elisa Giovannetti: not disclosures.

Carolina Díaz Gallardo: not disclosures.

Patrick Pauwels: not disclosures.

Mauricio Mahave: not disclosures.

References

  1. 1.
    Molina J, Yang P, Cassivi S, et al. Non–small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 2008;83(5):584–94.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ferreccio C, González C, Milosavjlevic V, et al. Lung cancer and arsenic concentrations in drinking water in Chile. Epidemiology. 2000;11(6):673–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Rapp E, Pater JL, Willan A, et al. Chemotherapy can prolong survival in patients with advanced non-small-cell lung cancer--report of a Canadian multicenter randomized trial. J Clin Oncol. 1988;6(4):633–41.CrossRefPubMedGoogle Scholar
  4. 4.
    NSCLC Meta-Analyses Collaborative Group. Chemotherapy in addition to supportive care improves survival in advanced non–small-cell lung cancer: a systematic review and meta-analysis of individual patient data from 16 randomized controlled trials. J Clin Oncol. 26:4617–25.Google Scholar
  5. 5.
    Scagliotti GV, Parikh P, von Pawel J, et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol. 2008;26(21):3543–51.CrossRefPubMedGoogle Scholar
  6. 6.
    Fossella FV, Lynch T, Shepherd FA. Second line chemotherapy for NSCLC: establishing a gold standard. Lung Cancer. 2002;38(Suppl 4):5–12.CrossRefPubMedGoogle Scholar
  7. 7.
    Hanna N, Shepherd FA, Fossella FV, et al. Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J Clin Oncol. 2004;22(9):1589–97.CrossRefPubMedGoogle Scholar
  8. 8.
    Rolfo C, Caglevic C, Mahave M, Bustamante E, Castañon E, Gil BI, Marquez-Medina D. Chapter 14: Chemotherapy beyond the second line of treatment in non-small cell lung cancer: new drug development. In: Marquez-Medina D, editor. Fighting lung cancer with conventional therapies. New York: Nova Science Publishers; 2015. p. 229–40.Google Scholar
  9. 9.
    Vokes E, Salgia R, Karrison R. Evidence-based role of bevacizumab in non-small cell lung cancer. Ann Oncol. 2013;24(1):6–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Caglevic C, Grassi M, Raez L, Listi A, Giallombardo M, Bustamante E, Gil-Bazo I, Rolfo C. Nintedanib in non-small cell lung cancer: from preclinical to approval. Ther Adv Respir Dis. 2015;9(4):164–72.CrossRefPubMedGoogle Scholar
  11. 11.
    Reck M, Kaiser R, Mellemgaard A, et al. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): a phase 3, double-blind, randomised controlled trial. Lancet Oncol. 2014 Feb;15(2):143–55.CrossRefPubMedGoogle Scholar
  12. 12.
    Horn L, Pao W. EML4-ALK: honing in on a new target in non–small-cell lung cancer. J Clin Oncol. 2009;27(26):4232–5.CrossRefPubMedGoogle Scholar
  13. 13.
    Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499(7457):214–8.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Györki D, Callahan M, Wolchock J, Ariyan C. The delicate balance of melanoma immunotherapy. Clin Transl Immunol. 2013;2:e5.CrossRefGoogle Scholar
  15. 15.
    Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol. 2007;7:41–51.CrossRefPubMedGoogle Scholar
  16. 16.
    Vesely M, Kershaw M, Schreiber R, Smyth M. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29:235–71.CrossRefPubMedGoogle Scholar
  17. 17.
    Chen D, Mellman I. Oncology meets immunology: “The Cancer-Immunity Cycle.”. Immunity. 2013;39(25):1–10.CrossRefPubMedGoogle Scholar
  18. 18.
    Abbas A, Lichtman A, Pillai S. Immunity to tumors. In: Abbas AK, Lichtman AH, Pillai S, editors. Celular and molecular immunology. Philadelphia, PA: Elsevier; 2015. p. 383–97.Google Scholar
  19. 19.
    Pardoll D. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Cebon J, Behren A. Evolving role of tumor antigens for future melanoma therapies. Future Oncol. 2014;10:1457–68.CrossRefPubMedGoogle Scholar
  21. 21.
    Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27(4):450–61.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Boussiotis V. Somatic mutations and immunotherapy outcome with CTLA-4 blockade in melanoma. N Engl J Med. 2014;371(23):30–2.CrossRefGoogle Scholar
  23. 23.
    Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol. 2015;33:1974–82.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Weber J. Anti-CTLA-4 antibody ipilimumab: case studies of clinical response and immune-related adverse events. Oncologist. 2007;12:864–72.CrossRefPubMedGoogle Scholar
  25. 25.
    Cameron F, Whiteside G, Perry C. Ipilimumab: first global approval. Drugs. 2011;71(8):1093–104.CrossRefPubMedGoogle Scholar
  26. 26.
    Hodi F, O’Day S, McDermott D, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Tomasini P, Khobta N, Greillier L, Barlesi F. Ipilimumab: its potential in non-small cell lung cancer. Ther Adv Med Oncol. 2012;4(2):43–50.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Weber J, Hamid O, Amin A, et al. Randomized phase I pharmacokinetic study of ipilimumab with or without one of two different chemotherapy regimens in patients with untreated advanced melanoma. Cancer Immun. 2013;13:7.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Lynch T, Bondarenko I, Luft A. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non–small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol. 2012;30(17):2046–54.CrossRefPubMedGoogle Scholar
  30. 30.
  31. 31.
  32. 32.
    Ribas A, Hanson D, Noe D, et al. Tremelimumab (CP-675,206), a cytotoxic T lymphocyte–associated antigen 4 blocking monoclonal antibody in clinical development for patients with cancer. Oncologist. 2007;12(7):873–83.CrossRefPubMedGoogle Scholar
  33. 33.
    Zatloukal P, Heo DS, Park K, et al. Randomized phase II clinical trial comparing tremelimumab (CP-675,206) with best supportive care (BSC) following first-line platinum-based therapy in patients (pts) with advanced non-small cell lung cancer (NSCLC). J Clin Oncol (Meeting Abstracts). 2009;27(15S):8071.Google Scholar
  34. 34.
  35. 35.
    Nguyen L, Ohashi P. Clinical blockade of PD1 and LAG3- Potential mechanisms of action. Nat Rev Immunol. 2015;15:45–56.CrossRefPubMedGoogle Scholar
  36. 36.
    Zou W, Chen L. Inhibitory B7-family molecules in the tumor microenvironment. Nat Rev Immunol. 2008;8(6):467–77.CrossRefPubMedGoogle Scholar
  37. 37.
    Konishi J, Yamazaki K, Azuma M, et al. B7-H1 expression on non small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression. Clin Cancer Res. 2004;10(15):5094–100.CrossRefPubMedGoogle Scholar
  38. 38.
    Pauken KE, Wherry EJ. Overcoming T cell exhaustion in infection and cancer. Trends Immunol. 2015;36(4):265–76.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Chinai JM, Janakiram M, Chen F, et al. New immunotherapies targeting the PD-1 pathway. Trends Pharmacol Sci. 2015;36(9):587–95.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wang C, Thudium K, Han M, et al. In vitro characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo toxicology in non-human primates. Cancer Immunol Res. 2014;2:846.CrossRefPubMedGoogle Scholar
  41. 41.
    Sundar R, Cho B-C, Brahmer JR, Soo RA. Nivolumab in NSCLC: latest evidence and clinical potential. Ther Adv Med Oncol. 2015;7(2):85–96.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Topalian SL, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Gettinger SN, et al. Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol. 2015;33:2004–12.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Rizvi NA, Mazieres J, Planchard D, et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol. 2015;16:257–65.CrossRefPubMedGoogle Scholar
  45. 45.
    Horn L, Rizvi N, Mazieres J et al. Longer-term follow-up of a phase 2 study (CheckMate 063) of nivolumab in patients with advanced refractory squamous (SQ) non-small cell lung cancer (NSCLC). J Thor Oncol. 2015;10(9 suppl 2), abstract 02.03.Google Scholar
  46. 46.
    Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non–small-cell lung cancer. N Engl J Med. 2015;373:123–35.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced non-squamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39.CrossRefPubMedGoogle Scholar
  48. 48.
    Borghaei H, Brahmer J., Horn L. et al. Nivolumab vs docetaxel in patients with advanced NSCLC: CheckMate 017/057 2-y update and exploratory cytokine profile analyses. J Clin Oncol. 2016;34(suppl; abstr 9025).Google Scholar
  49. 49.
  50. 50.
    Antonia S, Brahmer J, Gettinger S, et al. Nivolumab (anti-PD-1; BMS-936558, ONO-4538) in combination with platinum-based doublet chemotherapy in advanced non-small cell lung cancer (NSCLC). J Clin Oncol. 2014;32:5s(suppl; abstr 8113).Google Scholar
  51. 51.
    Gettinger S, Shepherd F, Antonia S, et al. First-line nivolumab (anti-PD-1; BMS-936558, ONO-4538) monotherapy in advanced NSCLC: safety, efficacy, and correlation of outcomes with PD-L1 status. J Clin Oncol. 2014;32:5s(suppl; abstr 8024).Google Scholar
  52. 52.
    Gettinger SN. Presented at European Society for Medical Oncology (ESMO), September 25–29, 2015, Vienna, Austria.Google Scholar
  53. 53.
    Antonia S, Gettinger S, Quan Man Chow L, et al. Nivolumab (anti-PD-1; BMS-936558, ONO-4538) and ipilimumab in first-line NSCLC: interim phase I results. J Clin Oncol. 2014;32:5(suppl; abstr 8023).Google Scholar
  54. 54.
    Rizvi NA, Gettinger SN, Goldman JW, et al.: Safety and efficacy of first-line nivolumab and ipilimumab in non-small cell lung cancer. 16th World conference on lung cancer. Abstract ORAL02.05. Presented September 7, 2015.Google Scholar
  55. 55.
    Hellmann M., Gettinger S., Goldman J., et al. CheckMate 012: “Safety and efficacy of first-line nivolumab and ipilimumab in advanced NSCLC”. J Clin Oncol. 2016; 34(suppl; abstr 3001).Google Scholar
  56. 56.
    Najjar Y, Kirkwood J. Pembrolizumab: pharmacology and therapeutics. Am J Hematol Oncol. 2014;10(5):17–9.Google Scholar
  57. 57.
    Garon E, Rizvi N, Hui R, et al. Pembrolizumab for the treatment of non–small-cell lung cancer. N Engl J Med. 2015;372:2018–28.CrossRefPubMedGoogle Scholar
  58. 58.
    Hui R., Gandhi L., Carcereny Costa E, et al. Long-term OS for patients with advanced NSCLC enrolled in the KEYNOTE-001 study of pembrolizumab. J Clin Oncol. 2016;34 (suppl; abstr 9026)Google Scholar
  59. 59.
    Herbst R, Baas P, Kim DW, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387(10027):1540–50.CrossRefPubMedGoogle Scholar
  60. 60.
    Baas P, Garon E, Herbst R., et al. Relationship between level of PD-L1 expression and outcomes in the KEYNOTE-010 study of pembrolizumab vs docetaxel for previously treated, PD-L1–Positive NSCLC. J Clin Oncol. 2016;34(suppl; abstr 9015).Google Scholar
  61. 61.
    Garon E., Herbst R, Kim DW, et al. Pembrolizumab vs docetaxel for previously treated advanced NSCLC with a PD-L1 tumor proportion score (TPS) 1%–49%: results from KEYNOTE-010. J Clin Oncol. 2016;34(suppl; abstr 9024).Google Scholar
  62. 62.
    Herbst R, Baas P, Perez-Gracia JL et al. Archival vs new tumor samples for assessing PD-L1 expression in the KEYNOTE-010 study of pembrolizumab vs docetaxel for previously treated advanced NSCLC. J Clin Oncol. 2016;34(suppl; abstr 3030).Google Scholar
  63. 63.
  64. 64.
  65. 65.
    Philips GK, Atkins M. Therapeutic uses of anti-PD-1 and anti-PD-L1 antibodies. Int Immunol. 2015;27(1):39–46.CrossRefPubMedGoogle Scholar
  66. 66.
    Haile S, Dalal S, Clements V. Soluble CD80 restores T cell activation and overcomes tumor cell programmed death ligand-1-mediated immune suppression. J Immunol. 2013;191(5):2829–36.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Brahmer J, Rizvi N, Lutzky J, et al. Clinical activity and biomarkers of MEDI4736, an anti-PD-L1 antibody, in patients with NSCLC. J Clin Oncol. 2014;32:5(suppl; abstr 8021).Google Scholar
  68. 68.
    Rizvi N, Brahmer J, Ou SH, et al. Safety and clinical activity of MEDI4736, an anti-programmed cell death-ligand 1 (PD-L1) antibody, in patients with non-small cell lung cancer (NSCLC). J Clin Oncol. 2015;33(15 Suppl):8032.Google Scholar
  69. 69.
    Antonia S., Kim SW, Spira A., et al. Safety and clinical activity of durvalumab (MEDI4736), an anti-PD-L1 antibody, in treatment-naïve patients with advanced non–small-cell lung cancer. J Clin Oncol. 2016;34(suppl; abstr 9029).Google Scholar
  70. 70.
    Antonia S, Goldberg S, Balmanoukian A, et al. Safety and antitumour activity of durvalumab plus tremelimumab in non-small cell lung cancer: a multicentre, phase 1b study. Lancet Oncol. 2016;17(3):299–308.CrossRefPubMedGoogle Scholar
  71. 71.
    Reichert J. Antibodies to watch in 2016. MAbs. 2016;8(2):197–204.CrossRefPubMedGoogle Scholar
  72. 72.
    Spigel D, Gettinger S., Horn L., et al. Clinical activity, safety, and biomarkers of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic non-small cell lung cancer (NSCLC). J Clin Oncol. 2013;31(suppl; abstr 8008).Google Scholar
  73. 73.
    Herbst R, Soria J-C, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–7.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Schmid P., Hegde P., Zou W., et al. Association of PD-L2 expression in human tumors with atezolizumab activity. J Clin Oncol. 2016;34(suppl; abstr 11506).Google Scholar
  75. 75.
    Liu S., Powderly J., Camidge R. et al. Safety and efficacy of MPDL3280A (anti-PDL1) in combination with platinum-based doublet chemotherapy in patients with advanced non-small cell lung cancer (NSCLC). J Clin Oncol. 2015;33(suppl; abstr 8030).Google Scholar
  76. 76.
    Besse B, Johnson M, Jänne PA, et al. Phase II, single-arm trial (BIRCH) of atezolizumab as first-line or subsequent therapy for locally advanced or metastatic PD-L1-selected non-small cell lung cancer (NSCLC). Presented at 2015 European Cancer Congress, September 25–29, Vienna, Austria. Abstract 16LBA.Google Scholar
  77. 77.
    Fehrenbacher L, Spira A, Ballinger M, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387(10030):1837–46.CrossRefPubMedGoogle Scholar
  78. 78.
    Smith D.,Vansteenkiste J., Fehrenbacher L., et al. Updated survival and biomarker analyses of a randomized phase II study of atezolizumab vs docetaxel in 2 L/3 L NSCLC (POPLAR). J Clin Oncol. 2016;34(suppl; abstr 9028).Google Scholar
  79. 79.
    Hamanishi J, Mandai M, Konishi I. Immune checkpoint inhibition in ovarian cancer. Int Immunol. 2016;7. pii:dxw020.Google Scholar
  80. 80.
    Kelly K, Patel M., Infante J. et al. Avelumab (MSB0010718C), an anti-PD-L1 antibody, in patients with metastatic or locally advanced solid tumors: assessment of safety and tolerability in a phase I, open-label expansion study. J Clin Oncol. 2015;33(suppl; abstr 3044).Google Scholar
  81. 81.
    Gulley J, Spigel D, Kelly K, et al. Avelumab (MSB0010718C), an anti-PD-L1 antibody, in advanced NSCLC patients: a phase 1b, open-label expansion trial in patients progressing after platinum-based chemotherapy. J Clin Oncol (Meeting Abstracts). 2015;33(15_suppl):8034.Google Scholar
  82. 82.
    Verschraegen C., Chen F., Spigel D., et al. Avelumab (MSB0010718C; anti-PD-L1) as a first-line treatment for patients with advanced NSCLC from the JAVELIN Solid Tumor phase 1b trial: safety, clinical activity, and PD-L1 expression. J Clin Oncol. 2016;34(suppl; abstr 9036).Google Scholar
  83. 83.
  84. 84.
    Brahmer J, Tykodi S, Chow L, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Globocan 2012: “Estimated Cancer Incidence, Mortality and Prevalence Worlwide 2012.” http://globocan.iarc.fr/Pages/fact_sheets_population.aspx
  86. 86.
    NIH, National Cancer Institute: surveillance, epidemiology and end results. http://seer.cancer.gov/statfacts/html/lungb.html
  87. 87.
    Santarpia M, Karachaliou N. Tumor immune microenvironment characterization and response to anti-PD-1 therapy. Cancer Biol Med. 2015;12(2):74–8.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Carbognin L, Pilotto S, Milella M, et al. Differential activity of nivolumab, pembrolizumab and MPDL3280A according to the tumor expression of programmed death-ligand-1 (PD-L1): sensitivity analysis of trials in melanoma, lung and genitourinary cancers. PLoS One. 10(6):e0130142. doi: 10.1371/journal.pone.0130142.
  89. 89.
    Kerr K, Hirsch F. Programmed death ligand-1 immunohistochemistry. Friend or foe? Arch Pathol Lab Med. 2016;140:326–31.CrossRefPubMedGoogle Scholar
  90. 90.
    Michot JM, Bigenwald C, Champiat S, et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer. 2016;54:139–48.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Christian Rolfo
    • 1
    • 2
  • Christian Caglevic
    • 3
    • 4
  • Mariacarmela Santarpia
    • 5
  • Antonio Araujo
    • 6
  • Elisa Giovannetti
    • 7
  • Carolina Diaz Gallardo
    • 8
  • Patrick Pauwels
    • 9
  • Mauricio Mahave
    • 4
  1. 1.Phase I—Early Clinical Trials Unit, Oncology DepartmentUniversity Hospital AntwerpEdegemBelgium
  2. 2.Center or Oncological Research (CORE)Antwerp UniversityAntwerpBelgium
  3. 3.Department of Investigational Cancer Drugs, Medical Oncology DepartmentInstituto Oncológico Fundación Arturo López PérezSantiagoChile
  4. 4.Medical Oncology DepartmentInstituto Oncológico Fundación Arturo López PérezSantiagoChile
  5. 5.Medical Oncology Unit, Department of Human Pathology ‘G. Barresi’University of MessinaMessinaItaly
  6. 6.Medical Oncology DepartmentCentro Hospitalar do PortoPortoPortugal
  7. 7.Department of Medical OncologyVU University Medical CenterAmsterdamThe Netherlands
  8. 8.Immunology Unit, Internal Medicine ServiceClinicas Las CondesSantiagoChile
  9. 9.Molecular Pathology Unit, Pathology DepartmentAntwerp University HospitalEdegemBelgium

Personalised recommendations