Drosophila melanogaster Neuroblasts: A Model for Asymmetric Stem Cell Divisions

  • Emmanuel Gallaud
  • Tri Pham
  • Clemens Cabernard
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 61)


Asymmetric cell division (ACD) is a fundamental mechanism to generate cell diversity, giving rise to daughter cells with different developmental potentials. ACD is manifested in the asymmetric segregation of proteins or mRNAs, when the two daughter cells differ in size or are endowed with different potentials to differentiate into a particular cell type (Horvitz and Herskowitz, Cell 68:237–255, 1992). Drosophila neuroblasts, the neural stem cells of the developing fly brain, are an ideal system to study ACD since this system encompasses all of these characteristics. Neuroblasts are intrinsically polarized cells, utilizing polarity cues to orient the mitotic spindle, segregate cell fate determinants asymmetrically, and regulate spindle geometry and physical asymmetry. The neuroblast system has contributed significantly to the elucidation of the basic molecular mechanisms underlying ACD. Recent findings also highlight its usefulness to study basic aspects of stem cell biology and tumor formation. In this review, we will focus on what has been learned about the basic mechanisms underlying ACD in fly neuroblasts.


Mitotic Spindle Mushroom Body Asymmetric Cell Division Cleavage Furrow Spindle Orientation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albertson R, Doe CQ (2003) Dlg, Scrib and Lgl regulate neuroblast cell size and mitotic spindle asymmetry. Nat Cell Biol 5:166–170. doi: 10.1038/ncb922 PubMedCrossRefGoogle Scholar
  2. Atwood SX, Prehoda KE (2009) aPKC phosphorylates Miranda to polarize fate determinants during neuroblast asymmetric cell division. Curr Biol 19:723–729. doi: 10.1016/j.cub.2009.03.056 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Atwood SX, Chabu C, Penkert RR et al (2007) Cdc42 acts downstream of Bazooka to regulate neuroblast polarity through Par-6-aPKC. J Cell Sci 120:3200–3206. doi: 10.1242/jcs.014902 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bailey MJ, Prehoda KE (2015) Establishment of par-polarized cortical domains via phosphoregulated membrane motifs. Dev Cell 35:199–210. doi: 10.1016/j.devcel.2015.09.016 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Barros CS, Phelps CB, Brand AH (2003) Drosophila nonmuscle myosin II promotes the asymmetric segregation of cell fate determinants by cortical exclusion rather than active transport. Dev Cell 5:829–840PubMedCrossRefGoogle Scholar
  6. Basto R, Lau J, Vinogradova T et al (2006) Flies without centrioles. Cell 125:1375–1386. doi: 10.1016/j.cell.2006.05.025 PubMedCrossRefGoogle Scholar
  7. Bayraktar OA, Doe CQ (2013) Combinatorial temporal patterning in progenitors expands neural diversity. Nature 498:449–455. doi: 10.1038/nature12266 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bello B, Reichert H, Hirth F (2006) The brain tumor gene negatively regulates neural progenitor cell proliferation in the larval central brain of Drosophila. Development 133:2639–2648. doi: 10.1242/dev.02429 PubMedCrossRefGoogle Scholar
  9. Bello BC, Izergina N, Caussinus E, Reichert H (2008) Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development. Neural Dev 3:5. doi: 10.1186/1749-8104-3-5 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Boone JQ, Doe CQ (2008) Identification of Drosophila type II neuroblast lineages containing transit amplifying ganglion mother cells. Dev Neurobiol 68:1185–1195. doi: 10.1002/dneu.20648 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bowman SK, Neumüller RA, Novatchkova M et al (2006) The Drosophila NuMA Homolog Mud regulates spindle orientation in asymmetric cell division. Dev Cell 10:731–742. doi: 10.1016/j.devcel.2006.05.005 PubMedCrossRefGoogle Scholar
  12. Bowman SK, Rolland V, Betschinger J, Kinsey KA (2008) The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast lineages in Drosophila. Dev Cell 14:535–546. doi: 10.1016/j.devcel.2008.03.004 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Brand AH, Livesey FJ (2011) Neural stem cell biology in vertebrates and invertebrates: more alike than different? Neuron 70:719–729. doi: 10.1016/j.neuron.2011.05.016 PubMedCrossRefGoogle Scholar
  14. Cabernard C (2012) Cytokinesis in Drosophila melanogaster. Cytoskeleton (Hoboken) 69:791–809. doi: 10.1002/cm.21060 CrossRefGoogle Scholar
  15. Cabernard C, Doe CQ (2009) Apical/basal spindle orientation is required for neuroblast homeostasis and neuronal differentiation in Drosophila. Dev Cell 17:134–141. doi: 10.1016/j.devcel.2009.06.009 PubMedCrossRefGoogle Scholar
  16. Cabernard C, Prehoda KE, Doe CQ (2010) A spindle-independent cleavage furrow positioning pathway. Nature 467:91–94. doi: 10.1038/nature09334 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cai Y, Chia W, Yang X (2001) A family of snail-related zinc finger proteins regulates two distinct and parallel mechanisms that mediate Drosophila neuroblast asymmetric divisions. EMBO J 20:1704–1714. doi: 10.1093/emboj/20.7.1704 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cai Y, Yu F, Lin S et al (2003) Apical complex genes control mitotic spindle geometry and relative size of daughter cells in Drosophila neuroblast and pI asymmetric divisions. Cell 112:51–62PubMedCrossRefGoogle Scholar
  19. Campos-Ortega JA, Hartenstein V (1985) The embryonic development of Drosophila melanogaster. Springer, BerlinCrossRefGoogle Scholar
  20. Caussinus E. Gonzalez C (2005) Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat Genet 37:1125–1129. doi: 10.1038/ng1632
  21. Chabu C, Doe CQ (2008) Dap160/intersectin binds and activates aPKC to regulate cell polarity and cell cycle progression. Development 135:2739–2746. doi: 10.1242/dev.024059 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chabu C, Doe CQ (2009) Twins/PP2A regulates aPKC to control neuroblast cell polarity and self-renewal. Dev Biol 330:399–405. doi: 10.1016/j.ydbio.2009.04.014 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chell JM, Brand AH (2010) Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell 143:1161–1173. doi: 10.1016/j.cell.2010.12.007 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Choksi SP, Southall TD, Bossing T et al (2006) Prospero acts as a binary switch between self-renewal and differentiation in Drosophila neural stem cells. Dev Cell 11:775–789. doi: 10.1016/j.devcel.2006.09.015 PubMedCrossRefGoogle Scholar
  25. Chu-LaGraff Q, Doe CQ (1993) Neuroblast specification and formation regulated by wingless in the Drosophila CNS. Science 261:1594–1597. doi: 10.1126/science.8372355 PubMedCrossRefGoogle Scholar
  26. Cinalli RM, Lehmann R (2013) A spindle-independent cleavage pathway controls germ cell formation in Drosophila. Nat Cell Biol 15:839–845. doi: 10.1038/ncb2761 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Conduit PT, Raff JW (2010) Cnn dynamics drive centrosome size asymmetry to ensure daughter centriole retention in Drosophila neuroblasts. Curr Biol 20:2187–2192. doi: 10.1016/j.cub.2010.11.055 PubMedCrossRefGoogle Scholar
  28. Conduit PT, Feng Z, Richens JH et al (2014) The centrosome-specific phosphorylation of Cnn by Polo/Plk1 drives Cnn scaffold assembly and centrosome maturation. Dev Cell. doi: 10.1016/j.devcel.2014.02.013 PubMedPubMedCentralGoogle Scholar
  29. Connell M, Cabernard C, Ricketson D et al (2011) Asymmetric cortical extension shifts cleavage furrow position in Drosophila neuroblasts. Mol Biol Cell 22:4220–4226. doi: 10.1091/mbc.E11-02-0173 PubMedPubMedCentralCrossRefGoogle Scholar
  30. D’Avino PP, Giansanti MG, Petronczki M (2015) Cytokinesis in animal cells. Cold Spring Harb Perspect Biol 7:a015834. doi: 10.1101/cshperspect.a015834 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Derivery E, Seum C, Daeden A et al (2015) Polarized endosome dynamics by spindle asymmetry during asymmetric cell division. Nature 528:280–285. doi: 10.1038/nature16443 PubMedCrossRefGoogle Scholar
  32. Doe CQ, Chu-LaGraff Q, Wright DM, Scott MP (1991) The prospero gene specifies cell fates in the Drosophila central nervous system. Cell. doi: 10.1016/0092-8674(91)90463-9 PubMedGoogle Scholar
  33. Ebens AJ, Garren H, Cheyette BNR, Zipursky SL (1993) The Drosophila anachronism locus: a glycoprotein secreted by glia inhibits neuroblast proliferation. Cell 74:15–27. doi: 10.1016/0092-8674(93)90291-W PubMedCrossRefGoogle Scholar
  34. Egger B, Boone JQ, Stevens NR et al (2007) Regulation of spindle orientation and neural stem cell fate in the Drosophila optic lobe. Neural Dev 2:1. doi: 10.1186/1749-8104-2-1 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Egger B, Chell JM, Brand AH (2008) Insights into neural stem cell biology from flies. Philos Trans R Soc Lond B Biol Sci 363(1489):39–56PubMedCrossRefGoogle Scholar
  36. Egger B, Gold KS, Brand AH (2010) Notch regulates the switch from symmetric to asymmetric neural stem cell division in the Drosophila optic lobe. Development 137:2981–2987. doi: 10.1242/dev.051250 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Egger B, Gold KS, Brand AH (2011) Regulating the balance between symmetric and asymmetric stem cell division in the developing brain. Fly (Austin) 5:237–241CrossRefGoogle Scholar
  38. Erben V, Waldhuber M, Langer D et al (2008) Asymmetric localization of the adaptor protein Miranda in neuroblasts is achieved by diffusion and sequential interaction of Myosin II and VI. J Cell Sci 121:1403–1414. doi: 10.1242/jcs.020024 PubMedCrossRefGoogle Scholar
  39. Fuerstenberg S, Peng CY, Alvarez-Ortiz P et al (1998) Identification of Miranda protein domains regulating asymmetric cortical localization, cargo binding, and cortical release. Mol Cell Neurosci 12:325–339. doi: 10.1006/mcne.1998.0724 PubMedCrossRefGoogle Scholar
  40. Fuse N, Hisata K, Katzen AL, Matsuzaki F (2003) Heterotrimeric G proteins regulate daughter cell size asymmetry in Drosophila neuroblast divisions. Curr Biol 13:947–954. doi: 10.1016/S0960-9822(03)00334-8 PubMedCrossRefGoogle Scholar
  41. Gallaud E, Caous R, Pascal A et al (2014) Ensconsin/Map7 promotes microtubule growth and centrosome separation in Drosophila neural stem cells. J Cell Biol 204:1111–1121. doi: 10.1083/jcb.201311094 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Giansanti MG, Gatti M, Bonaccorsi S (2001) The role of centrosomes and astral microtubules during asymmetric division of Drosophila neuroblasts. Development 128:1137–1145PubMedGoogle Scholar
  43. Gonzalez C (2013) Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat Rev Cancer 13:172–183. doi: 10.1038/nrc3461 PubMedCrossRefGoogle Scholar
  44. Hartenstein V, Younossi-Hartenstein A, Lekven A (1994) Delamination and division in the Drosophila neurectoderm: spatiotemporal pattern, cytoskeletal dynamics, and common control by neurogenic and segment polarity genes. Dev Biol 165:480–499. doi: 10.1006/dbio.1994.1269 PubMedCrossRefGoogle Scholar
  45. Hirata J, Nakagoshi H, Nabeshima Y, Matsuzaki F (1995) Asymmetric segregation of the homeodomain protein Prospero during Drosophila development. Nature 377:627–630. doi: 10.1038/377627a0 PubMedCrossRefGoogle Scholar
  46. Hofbauer A, Campos-Ortega JA (1990) Proliferation pattern and early differentiation of the optic lobes in Drosophila melanogaster. Roux’s Arch Dev Biol 198:264–274CrossRefGoogle Scholar
  47. Homem CCF, Knoblich JA (2012) Drosophila neuroblasts: a model for stem cell biology. Development 139:4297–4310. doi: 10.1242/dev.080515 PubMedCrossRefGoogle Scholar
  48. Homem CCF, Steinmann V, Burkard TR et al (2014) Ecdysone and mediator change energy metabolism to terminate proliferation in Drosophila neural stem cells. Cell 158:874–888. doi: 10.1016/j.cell.2014.06.024 PubMedCrossRefGoogle Scholar
  49. Huang C, Chan JA, Schuurmans C (2014) Proneural bHLH genes in development and disease. Curr Top Dev Biol 110:75–127. doi: 10.1016/B978-0-12-405943-6.00002-6 PubMedCrossRefGoogle Scholar
  50. Ikeshima-Kataoka H, Skeath JB, Nabeshima Y et al (1997) Miranda directs Prospero to a daughter cell during Drosophila asymmetric divisions. Nature 390:625–629. doi: 10.1038/37641 PubMedCrossRefGoogle Scholar
  51. Ito K, Hotta Y (1992) Proliferation pattern of postembryonic neuroblasts in the brain of Drosophila-melanogaster. Dev Biol 149:134–148PubMedCrossRefGoogle Scholar
  52. Ito K, Awano W, Suzuki K et al (1997) The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 124:761–771PubMedGoogle Scholar
  53. Izumi Y, Hirose T, Tamai Y et al (1998) An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J Cell Biol 143:95–106PubMedPubMedCentralCrossRefGoogle Scholar
  54. Izumi Y, Ohta N, Itoh-Furuya A et al (2004) Differential functions of G protein and Baz-aPKC signaling pathways in Drosophila neuroblast asymmetric division. J Cell Biol 164:729–738. doi: 10.1083/jcb.200309162 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Izumi Y, Ohta N, Hisata K et al (2006) Drosophila Pins-binding protein Mud regulates spindle-polarity coupling and centrosome organization. Nat Cell Biol 8:586–593. doi: 10.1038/ncb1409 PubMedCrossRefGoogle Scholar
  56. Januschke J, Gonzalez C (2010) The interphase microtubule aster is a determinant of asymmetric division orientation in Drosophila neuroblasts. J Cell Biol 188:693–706. doi: 10.1083/jcb.200905024 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Januschke J, Llamazares S, Reina J, Gonzalez C (2011) Drosophila neuroblasts retain the daughter centrosome. Nat Commun 2:243. doi: 10.1038/ncomms1245 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Januschke J, Reina J, Llamazares S et al (2013) Centrobin controls mother–daughter centriole asymmetry in Drosophila neuroblasts. Nat Cell Biol 15:241–248. doi: 10.1038/ncb2671 PubMedCrossRefGoogle Scholar
  59. Johnston CA, Hirono K, Prehoda KE, Doe CQ (2009) Identification of an Aurora-A/PinsLINKER/Dlg spindle orientation pathway using induced cell polarity in S2 cells. Cell 138:1150–1163. doi: 10.1016/j.cell.2009.07.041 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Jordan SN, Davies T, Zhuravlev Y et al (2016) Cortical PAR polarity proteins promote robust cytokinesis during asymmetric cell division. J Cell Biol 212:39–49. doi: 10.1083/jcb.201510063 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kaltschmidt JA, Davidson CM, Brown NH, Brand AH (2000) Rotation and asymmetry of the mitotic spindle direct asymmetric cell division in the developing central nervous system. Nat Cell Biol 2:7–12. doi: 10.1038/71323 PubMedCrossRefGoogle Scholar
  62. Kang KH, Reichert H (2014) Control of neural stem cell self-renewal and differentiation in Drosophila. Cell Tissue Res 359:33–45. doi: 10.1007/s00441-014-1914-9 PubMedCrossRefGoogle Scholar
  63. Knoblich JA (2010) Asymmetric cell division: recent developments and their implications for tumour biology. Nat Rev Mol Cell Biol 11:849–860. doi: 10.1038/nrm3010 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Knoblich JA, Jan LY, Jan YN (1995) Asymmetric segregation of Numb and Prospero during cell division. Nature 377:624–627. doi: 10.1038/377624a0 PubMedCrossRefGoogle Scholar
  65. Knoblich JA, Jan LY, Jan YN (1997) The N terminus of the Drosophila Numb protein directs membrane association and actin-dependent asymmetric localization. Proc Natl Acad Sci U S A 94:13005–13010. doi: 10.1016/0092-8674(92)90468-R PubMedPubMedCentralCrossRefGoogle Scholar
  66. Krahn MP, Egger-Adam D, Wodarz A (2009) PP2A antagonizes phosphorylation of Bazooka by PAR-1 to control apical-basal polarity in dividing embryonic neuroblasts. Dev Cell 16:901–908. doi: 10.1016/j.devcel.2009.04.011 PubMedCrossRefGoogle Scholar
  67. Lai S-L, Doe CQ, Brand A (2014) Transient nuclear Prospero induces neural progenitor quiescence. eLife 3:e03363. doi: 10.7554/eLife.03363 PubMedCentralGoogle Scholar
  68. Lee C-Y, Andersen RO, Cabernard C et al (2006a) Drosophila Aurora-A kinase inhibits neuroblast self-renewal by regulating aPKC/Numb cortical polarity and spindle orientation. Genes Dev 20:3464–3474. doi: 10.1101/gad.1489406 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lee C-Y, Robinson KJ, Doe CQ (2006b) Lgl, Pins and aPKC regulate neuroblast self-renewal versus differentiation. Nature 439:594–598. doi: 10.1038/nature04299 PubMedCrossRefGoogle Scholar
  70. Lee C-Y, Wilkinson BD, Siegrist SE et al (2006c) Brat is a Miranda cargo protein that promotes neuronal differentiation and inhibits neuroblast self-renewal. Dev Cell 10:441–449. doi: 10.1016/j.devcel.2006.01.017 PubMedCrossRefGoogle Scholar
  71. Lerit DA, Rusan NM (2013) PLP inhibits the activity of interphase centrosomes to ensure their proper segregation in stem cells. J Cell Biol 202:1013–1022. doi: 10.1083/jcb.201303141 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Lu MS, Johnston CA (2013) Molecular pathways regulating mitotic spindle orientation in animal cells. Development 140:1843–1856. doi: 10.1242/dev.087627 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Lu BW, Rothenberg M, Jan LY, Jan YN (1998) Partner of numb colocalizes with numb during mitosis and directs numb asymmetric localization in Drosophila neural and muscle progenitors. Cell 95:225–235PubMedCrossRefGoogle Scholar
  74. Matsuzaki F, Koizumi K, Hama C et al (1992) Cloning of the Drosophila prospero gene and its expression in ganglion mother cells. Biochem Biophys Res Commun 182:1326–1332PubMedCrossRefGoogle Scholar
  75. Matsuzaki F, Ohshiro T, Ikeshima-Kataoka H, Izumi H (1998) Miranda localizes Staufen and Prospero asymmetrically in mitotic neuroblasts and epithelial cells in early Drosophila embryogenesis. Development 125:4089–4098PubMedGoogle Scholar
  76. Mayer B, Emery G, Berdnik D et al (2005) Quantitative analysis of protein dynamics during asymmetric cell division. Curr Biol 15:1847–1854. doi: 10.1016/j.cub.2005.08.067 PubMedCrossRefGoogle Scholar
  77. Merdes A, Ramyar K, Vechio JD, Cleveland DW (1996) A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell 87:447–458PubMedCrossRefGoogle Scholar
  78. Morin X, Bellaïche Y (2011) Mitotic spindle orientation in asymmetric and symmetric cell divisions during animal development. Dev Cell 21:102–119. doi: 10.1016/j.devcel.2011.06.012 PubMedCrossRefGoogle Scholar
  79. Nair AR, Singh P, Garcia DS, Rodriguez-Crespo D (2016) The microcephaly-associated protein Wdr62/CG7337 is required to maintain centrosome asymmetry in Drosophila neuroblasts. Cell Rep 14:1100–1113. doi: 10.1016/j.celrep.2015.12.097 CrossRefGoogle Scholar
  80. Nipper RW, Siller KH, Smith NR et al (2007) Galphai generates multiple Pins activation states to link cortical polarity and spindle orientation in Drosophila neuroblasts. Proc Natl Acad Sci U S A 104:14306–14311. doi: 10.1073/pnas.0701812104 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Ogawa H, Ohta N, Moon W, Matsuzaki F (2009) Protein phosphatase 2A negatively regulates aPKC signaling by modulating phosphorylation of Par-6 in Drosophila neuroblast asymmetric divisions. J Cell Sci 122:3242–3249. doi: 10.1242/jcs.050955 PubMedCrossRefGoogle Scholar
  82. Ou G, Stuurman N, D’Ambrosio M, Vale RD (2010) Polarized myosin produces unequal-size daughters during asymmetric cell division. Science 330:677–680. doi: 10.1126/science.1196112 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Pacquelet A, Uhart P, Tassan J-P, Michaux G (2015) PAR-4 and anillin regulate myosin to coordinate spindle and furrow position during asymmetric division. J Cell Biol 210:1085–1099. doi: 10.1083/jcb.201503006 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Pereanu W, Hartenstein V (2006) Neural lineages of the Drosophila brain: a three-dimensional digital atlas of the pattern of lineage location and projection at the late larval stage. J Neurosci 26:5534–5553. doi: 10.1523/JNEUROSCI.4708-05.2006 PubMedCrossRefGoogle Scholar
  85. Petritsch C, Tavosanis G, Turck CW et al (2003) The Drosophila myosin VI Jaguar is required for basal protein targeting and correct spindle orientation in mitotic neuroblasts. Dev Cell. doi: 10.1016/S1534-5807(03)00020-0 PubMedGoogle Scholar
  86. Petronczki M, Knoblich JA (2001) DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila. Nat Cell Biol 3:43–49. doi: 10.1038/35050550 PubMedCrossRefGoogle Scholar
  87. Prehoda KE (2009) Polarization of Drosophila neuroblasts during asymmetric division. Cold Spring Harb Perspect Biol 1:a001388. doi: 10.1101/cshperspect.a001388 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Ramdas Nair A, Singh P, Salvador Garcia D et al (2016) The microcephaly-associated protein Wdr62/CG7337 is required to maintain centrosome asymmetry in Drosophila neuroblasts. Cell Rep 14:1100–1113. doi: 10.1016/j.celrep.2015.12.097 PubMedCrossRefGoogle Scholar
  89. Rebollo E, Sampaio P, Januschke J et al (2007) Functionally unequal centrosomes drive spindle orientation in asymmetrically dividing Drosophila neural stem cells. Dev Cell 12:467–474. doi: 10.1016/j.devcel.2007.01.021 PubMedCrossRefGoogle Scholar
  90. Rebollo E, Roldán M, Gonzalez C (2009) Spindle alignment is achieved without rotation after the first cell cycle in Drosophila embryonic neuroblasts. Development 136:3393–3397. doi: 10.1242/dev.041822 PubMedCrossRefGoogle Scholar
  91. Reichert H (2011) Drosophila neural stem cells: cell cycle control of self-renewal, differentiation, and termination in brain development. Cell Cycle Dev 53:529–546. doi: 10.1007/978-3-642-19065-0_21 CrossRefGoogle Scholar
  92. Rhyu MS, Jan LY, Jan YN (1994) Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell 76:477–491PubMedCrossRefGoogle Scholar
  93. Rolls MM, Albertson R, Shih H-P et al (2003) Drosophila aPKC regulates cell polarity and cell proliferation in neuroblasts and epithelia. J Cell Biol 163:1089–1098. doi: 10.1083/jcb.200306079 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Roth M, Roubinet C, Iffländer N et al (2015) Asymmetrically dividing Drosophila neuroblasts utilize two spatially and temporally independent cytokinesis pathways. Nat Commun 6:6551. doi: 10.1038/ncomms7551 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Rusan NM, Peifer M (2007) A role for a novel centrosome cycle in asymmetric cell division. J Cell Biol 177:13–20. doi: 10.1083/jcb.200612140 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Salzmann V, Chen C, Chiang CYA et al (2014) Centrosome-dependent asymmetric inheritance of the midbody ring in Drosophila germline stem cell division. 25:267–275. doi: 10.1091/mbc.E13-09-0541 Google Scholar
  97. Schaefer M, Shevchenko A, Shevchenko A, Knoblich JA (2000) A protein complex containing Inscuteable and the Gα-binding protein Pins orients asymmetric cell divisions in Drosophila. Curr Biol 10:353–362. doi: 10.1016/S0960-9822(00)00401-2 PubMedCrossRefGoogle Scholar
  98. Schober M, Schaefer M, Knoblich JA (1999) Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature 402:548–551. doi: 10.1038/990135 PubMedCrossRefGoogle Scholar
  99. Schuldt AJ, Adams J, Davidson CM et al (1998) Miranda mediates asymmetric protein and RNA localization in the developing nervous system. Genes Dev 12:1847–1857PubMedPubMedCentralCrossRefGoogle Scholar
  100. Sedzinski J, Biro M, Oswald A et al (2011) Polar actomyosin contractility destabilizes the position of the cytokinetic furrow. Nature 476:462–466. doi: 10.1038/nature10286 PubMedCrossRefGoogle Scholar
  101. Shen CP, Jan LY, Jan YN (1997) Miranda is required for the asymmetric localization of Prospero during mitosis in Drosophila. Cell 90:449–458PubMedCrossRefGoogle Scholar
  102. Shen CP, Knoblich JA, Chan YM et al (1998) Miranda as a multidomain adapter linking apically localized Inscuteable and basally localized Staufen and Prospero during asymmetric cell division in Drosophila. Genes Dev 12:1837–1846PubMedPubMedCentralCrossRefGoogle Scholar
  103. Siegrist SE, Doe CQ (2005) Microtubule-induced Pins/Galphai cortical polarity in Drosophila neuroblasts. Cell 123:1323–1335. doi: 10.1016/j.cell.2005.09.043 PubMedCrossRefGoogle Scholar
  104. Siegrist SE, Doe CQ (2006) Extrinsic cues orient the cell division axis in Drosophila embryonic neuroblasts. Development 133:529–536. doi: 10.1242/dev.02211 PubMedCrossRefGoogle Scholar
  105. Siller KH, Doe CQ (2008) Lis1/dynactin regulates metaphase spindle orientation in Drosophila neuroblasts. Dev Biol 319:1–9. doi: 10.1016/j.ydbio.2008.03.018 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Siller KH, Cabernard C, Doe CQ (2006) The NuMA-related Mud protein binds Pins and regulates spindle orientation in Drosophila neuroblasts. Nat Cell Biol 8:594–600. doi: 10.1038/ncb1412 PubMedCrossRefGoogle Scholar
  107. Singh P, Ramdas Nair A, Cabernard C (2014) The centriolar protein Bld10/Cep135 is required to establish centrosome asymmetry in Drosophila neuroblasts. Curr Biol 24:1548–1555. doi: 10.1016/j.cub.2014.05.050 PubMedCrossRefGoogle Scholar
  108. Smith CA, Lau KM, Rahmani Z et al (2007) aPKC-mediated phosphorylation regulates asymmetric membrane localization of the cell fate determinant Numb. EMBO J 26:468–480. doi: 10.1038/sj.emboj.7601495 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Sousa-Nunes R, Chia W, Somers WG (2009) Protein phosphatase 4 mediates localization of the Miranda complex during Drosophila neuroblast asymmetric divisions. Genes Dev 23:359–372. doi: 10.1101/gad.1723609 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Sousa-Nunes R, Yee LL, Gould AP (2011) Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature 471:508–512. doi: 10.1038/nature09867 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Spana EP, Doe CQ (1995) The Prospero transcription factor is asymmetrically localized to the cell cortex during neuroblast mitosis in Drosophila. Development 121:3187–3195PubMedGoogle Scholar
  112. Speicher S, Fischer A, Knoblich J, Carmena A (2008) The PDZ protein Canoe regulates the asymmetric division of Drosophila neuroblasts and muscle progenitors. Curr Biol 18:831–837. doi: 10.1016/j.cub.2008.04.072 PubMedCrossRefGoogle Scholar
  113. Truman JW, Bate M (1988) Spatial and temporal patterns of neurogenesis in the central nervous system of Drosophila melanogaster. Dev Biol 125:145–157. doi: 10.1016/0012-1606(88)90067-X PubMedCrossRefGoogle Scholar
  114. Tsuji T, Hasegawa E, Isshiki T (2008) Neuroblast entry into quiescence is regulated intrinsically by the combined action of spatial Hox proteins and temporal identity factors. Development 135:3859–3869. doi: 10.1242/dev.025189 PubMedCrossRefGoogle Scholar
  115. Vainberg IE, Lewis SA, Rommelaere H et al (1998) Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93:863–873PubMedCrossRefGoogle Scholar
  116. Varmark H, Llamazares S, Rebollo E et al (2007) Asterless is a centriolar protein required for centrosome function and embryo development in Drosophila. Curr Biol 17:1735–1745. doi: 10.1016/j.cub.2007.09.031 PubMedCrossRefGoogle Scholar
  117. Wang H, Somers GW, Bashirullah A et al (2006) Aurora-A acts as a tumor suppressor and regulates self-renewal of Drosophila neuroblasts. Genes Dev 20:3453–3463. doi: 10.1101/gad.1487506 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Wang H, Ouyang Y, Somers WG et al (2007) Polo inhibits progenitor self-renewal and regulates Numb asymmetry by phosphorylating Pon. Nature 449:96–100. doi: 10.1038/nature06056 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Wang X, Tsai J-W, Imai JH et al (2009) Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 461:947–955. doi: 10.1038/nature08435 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Wang C, Li S, Januschke J et al (2011) An ana2/ctp/mud complex regulates spindle orientation in Drosophila neuroblasts. Dev Cell 21:520–533. doi: 10.1016/j.devcel.2011.08.002 PubMedCrossRefGoogle Scholar
  121. Wee B, Johnston CA, Prehoda KE, Doe CQ (2011) Canoe binds RanGTP to promote PinsTPR/Mud-mediated spindle orientation. J Cell Biol 195:369–376. doi: 10.1083/jcb.201102130 PubMedPubMedCentralCrossRefGoogle Scholar
  122. White EA, Glotzer M (2012) Centralspindlin: at the heart of cytokinesis. Cytoskeleton (Hoboken) 69:882–892. doi: 10.1002/cm.21065 CrossRefGoogle Scholar
  123. White K, Grether ME, Abrams JM, Young L (1994) Genetic control of programmed cell death in Drosophila. Science 264:677–683. doi: 10.1126/science.8171319 PubMedCrossRefGoogle Scholar
  124. Wirtz-Peitz F, Nishimura T, Knoblich JA (2008) Linking cell cycle to asymmetric division: Aurora-A phosphorylates the Par complex to regulate Numb localization. Cell 135:161–173. doi: 10.1016/j.cell.2008.07.049 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Wodarz A, Ramrath A, Kuchinke U, Knust E (1999) Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts. Nature 402:544–547. doi: 10.1038/990128 PubMedCrossRefGoogle Scholar
  126. Yadlapalli S, Yamashita YM (2013) Chromosome-specific nonrandom sister chromatid segregation during stem-cell division. Nature 498:251–254. doi: 10.1038/nature12106 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Yamashita YM, Mahowald AP, Perlin JR, Fuller MT (2007) Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 315:518–521. doi: 10.1126/science.1134910 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Yasugi T, Sugie A, Umetsu D, Tabata T (2010) Coordinated sequential action of EGFR and Notch signaling pathways regulates proneural wave progression in the Drosophila optic lobe. Development 137:3193–3203. doi: 10.1242/dev.048058 PubMedCrossRefGoogle Scholar
  129. Yoshiura S, Ohta N, Matsuzaki F (2012) Tre1 GPCR signaling orients stem cell divisions in the Drosophila central nervous system. Dev Cell 22:79–91. doi: 10.1016/j.devcel.2011.10.027 PubMedCrossRefGoogle Scholar
  130. Yu F, Morin X, Cai Y et al (2000) Analysis of partner of inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in inscuteable apical localization. Cell 100:399–409. doi: 10.1016/S0092-8674(00)80676-5 PubMedCrossRefGoogle Scholar
  131. Yu F, Cai Y, Kaushik R et al (2003) Distinct roles of Galphai and Gbeta13F subunits of the heterotrimeric G protein complex in the mediation of Drosophila neuroblast asymmetric divisions. J Cell Biol 162:623–633. doi: 10.1083/jcb.200303174 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Yu F, Wang H, Qian H et al (2005) Locomotion defects, together with Pins, regulates heterotrimeric G-protein signaling during Drosophila neuroblast asymmetric divisions. Genes Dev 19:1341–1353. doi: 10.1101/gad.1295505 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Zhang F, Huang ZX, Bao H et al (2016a) Phosphotyrosyl phosphatase activator facilitates localization of Miranda through dephosphorylation in dividing neuroblasts. Development 143:35–44. doi: 10.1242/dev.127233 PubMedGoogle Scholar
  134. Zhang Y, Rai M, Wang C et al (2016b) Prefoldin and Pins synergistically regulate asymmetric division and suppress dedifferentiation. Sci Rep 6:23735. doi: 10.1038/srep23735 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Zhu S, Barshow S, Wildonger J et al (2011) Ets transcription factor pointed promotes the generation of intermediate neural progenitors in Drosophila larval brains. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1118595109 Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Emmanuel Gallaud
    • 1
  • Tri Pham
    • 1
    • 2
  • Clemens Cabernard
    • 2
  1. 1.Biozentrum, University of BaselBaselSwitzerland
  2. 2.Department of BiologyUniversity of WashingtonSeattleUSA

Personalised recommendations