Advertisement

A Comparative Perspective on Wnt/β-Catenin Signalling in Cell Fate Determination

  • Clare L. Garcin
  • Shukry J. HabibEmail author
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 61)

Abstract

The Wnt/β-catenin pathway is an ancient and highly conserved signalling pathway that plays fundamental roles in the regulation of embryonic development and adult homeostasis. This pathway has been implicated in numerous cellular processes, including cell proliferation, differentiation, migration, morphological changes and apoptosis. In this chapter, we aim to illustrate with specific examples the involvement of Wnt/β-catenin signalling in cell fate determination. We discuss the roles of the Wnt/β-catenin pathway in specifying cell fate throughout evolution, how its function in patterning during development is often reactivated during regeneration and how perturbation of this pathway has negative consequences for the control of cell fate.

The origin of all life was a single cell that had the capacity to respond to cues from the environment. With evolution, multicellular organisms emerged, and as a result, subsets of cells arose to form tissues able to respond to specific instructive signals and perform specialised functions. This complexity and specialisation required two types of messages to direct cell fate: intra- and intercellular. A fundamental question in developmental biology is to understand the underlying mechanisms of cell fate choice. Amongst the numerous external cues involved in the generation of cellular diversity, a prominent pathway is the Wnt signalling pathway in all its forms.

Keywords

Stem Cell Cell Fate Adenomatous Polyposis Coli Intestinal Stem Cell Epidermal Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We would like to thank Dr. Molly Lowndes, Dr. Ignacio Sancho-Martienz, Dr. Kifayathullah Liakath-ali, Dr. Ajay Mishra and Dr. Beate Lichtenberger for their critical reading of the manuscript.

References

  1. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R (1997) beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 16(13):3797–3804. doi: 10.1093/emboj/16.13.3797 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adamska M, Degnan SM, Green KM, Adamski M, Craigie A, Larroux C, Degnan BM (2007) Wnt and TGF-beta expression in the sponge Amphimedon queenslandica and the origin of metazoan embryonic patterning. PLoS One 2(10):e1031. doi: 10.1371/journal.pone.0001031 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Adamska M, Larroux C, Adamski M, Green K, Lovas E, Koop D, Richards GS, Zwafink C, Degnan BM (2010) Structure and expression of conserved Wnt pathway components in the demosponge Amphimedon queenslandica. Evol Dev 12(5):494–518. doi: 10.1111/j.1525-142X.2010.00435.x PubMedCrossRefGoogle Scholar
  4. Alexandre C, Baena-Lopez A, Vincent JP (2014) Patterning and growth control by membrane-tethered Wingless. Nature 505(7482):180–185. doi: 10.1038/nature12879 PubMedCrossRefGoogle Scholar
  5. Azzolin L, Zanconato F, Bresolin S, Forcato M, Basso G, Bicciato S, Cordenonsi M, Piccolo S (2012) Role of TAZ as mediator of Wnt signaling. Cell 151(7):1443–1456. doi: 10.1016/j.cell.2012.11.027 PubMedCrossRefGoogle Scholar
  6. Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, Bresolin S, Frasson C, Basso G, Guzzardo V, Fassina A, Cordenonsi M, Piccolo S (2014) YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell 158(1):157–170. doi: 10.1016/j.cell.2014.06.013 PubMedCrossRefGoogle Scholar
  7. Barker N (2008) The canonical Wnt/beta-catenin signalling pathway. Methods Mol Biol 468:5–15. doi: 10.1007/978-1-59745-249-6_1 PubMedCrossRefGoogle Scholar
  8. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165):1003–1007. doi: 10.1038/nature06196 PubMedCrossRefGoogle Scholar
  9. Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH, Sato T, Stange DE, Begthel H, van den Born M, Danenberg E, van den Brink S, Korving J, Abo A, Peters PJ, Wright N, Poulsom R, Clevers H (2010) Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6(1):25–36. doi: 10.1016/j.stem.2009.11.013 PubMedCrossRefGoogle Scholar
  10. Basak O, van de Born M, Korving J, Beumer J, van der Elst S, van Es JH, Clevers H (2014) Mapping early fate determination in Lgr5+ crypt stem cells using a novel Ki67-RFP allele. EMBO J 33(18):2057–2068. doi: 10.15252/embj.201488017 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Baumunk D, Reichelt U, Hildebrandt J, Krause H, Ebbing J, Cash H, Miller K, Schostak M, Weikert S (2013) Expression parameters of the metabolic pathway genes pyruvate dehydrogenase kinase-1 (PDK-1) and DJ-1/PARK7 in renal cell carcinoma (RCC). World J Urol 31(5):1191–1196. doi: 10.1007/s00345-012-0874-5 PubMedCrossRefGoogle Scholar
  12. Behrens J, Jerchow BA, Würtele M, Grimm J, Asbrand C, Wirtz R, Kühl M, Wedlich D, Birchmeier W (1998) Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science 280(5363):596–599PubMedCrossRefGoogle Scholar
  13. Biechele S, Cockburn K, Lanner F, Cox BJ, Rossant J (2013) Porcn-dependent Wnt signaling is not required prior to mouse gastrulation. Development 140(14):2961–2971. doi: 10.1242/dev.094458 PubMedCrossRefGoogle Scholar
  14. Blanpain C, Fuchs E (2009) Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10(3):207–217. doi: 10.1038/nrm2636 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Blish KR, Wang W, Willingham MC, Du W, Birse CE, Krishnan SR, Brown JC, Hawkins GA, Garvin AJ, D’Agostino RB, Torti FM, Torti SV (2008) A human bone morphogenetic protein antagonist is down-regulated in renal cancer. Mol Biol Cell 19(2):457–464. doi: 10.1091/mbc.E07-05-0433 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bowman AN, van Amerongen R, Palmer TD, Nusse R (2013) Lineage tracing with Axin2 reveals distinct developmental and adult populations of Wnt/β-catenin-responsive neural stem cells. Proc Natl Acad Sci USA 110(18):7324–7329. doi: 10.1073/pnas.1305411110 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, Knuechel R, Kirchner T (2001) Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci USA 98(18):10356–10361. doi: 10.1073/pnas.171610498 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Camilli TC, Weeraratna AT (2010) Striking the target in Wnt-y conditions: intervening in Wnt signaling during cancer progression. Biochem Pharmacol 80(5):702–711. doi: 10.1016/j.bcp.2010.03.002 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chalmers AD, Strauss B, Papalopulu N (2003) Oriented cell divisions asymmetrically segregate aPKC and generate cell fate diversity in the early Xenopus embryo. Development 130(12):2657–2668PubMedCrossRefGoogle Scholar
  20. Chan EF, Gat U, McNiff JM, Fuchs E (1999) A common human skin tumour is caused by activating mutations in beta-catenin. Nat Genet 21(4):410–413. doi: 10.1038/7747 PubMedCrossRefGoogle Scholar
  21. Chen WS, Antic D, Matis M, Logan CY, Povelones M, Anderson GA, Nusse R, Axelrod JD (2008) Asymmetric homotypic interactions of the atypical cadherin flamingo mediate intercellular polarity signaling. Cell 133(6):1093–1105. doi: 10.1016/j.cell.2008.04.048 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chera S, Ghila L, Dobretz K, Wenger Y, Bauer C, Buzgariu W, Martinou JC, Galliot B (2009) Apoptotic cells provide an unexpected source of Wnt3 signaling to drive hydra head regeneration. Dev Cell 17(2):279–289. doi: 10.1016/j.devcel.2009.07.014 PubMedCrossRefGoogle Scholar
  23. Chu ML, Ahn VE, Choi HJ, Daniels DL, Nusse R, Weis WI (2013) structural studies of Wnts and identification of an LRP6 binding site. Structure 21(7):1235–1242. doi: 10.1016/j.str.2013.05.006 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127(3):469–480. doi: 10.1016/j.cell.2006.10.018 PubMedCrossRefGoogle Scholar
  25. Clevers H (2016) Modeling development and disease with organoids. Cell 165(7):1586–1597. doi: 10.1016/j.cell.2016.05.082 PubMedCrossRefGoogle Scholar
  26. Clevers H, Loh KM, Nusse R (2014) Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346(6205):1248012. doi: 10.1126/science.1248012 PubMedCrossRefGoogle Scholar
  27. Cliffe A, Hamada F, Bienz M (2003) A role of Dishevelled in relocating Axin to the plasma membrane during wingless signaling. Curr Biol 13(11):960–966PubMedCrossRefGoogle Scholar
  28. Couso JP, Bishop SA, Martinez Arias A (1994) The wingless signalling pathway and the patterning of the wing margin in Drosophila. Development 120(3):621–636PubMedGoogle Scholar
  29. de Lau W, Barker N, Low TY, Koo BK, Li VS, Teunissen H, Kujala P, Haegebarth A, Peters PJ, van de Wetering M, Stange DE, van Es JE, Guardavaccaro D, Schasfoort RB, Mohri Y, Nishimori K, Mohammed S, Heck AJ, Clevers H (2011) Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476(7360):293–297. doi: 10.1038/nature10337 PubMedCrossRefGoogle Scholar
  30. de Lau W, Peng WC, Gros P, Clevers H (2014) The R-spondin/Lgr5/Rnf43 module: regulator of Wnt signal strength. Genes Dev 28(4):305–316. doi: 10.1101/gad.235473.113 PubMedPubMedCentralCrossRefGoogle Scholar
  31. De Vries WN, Evsikov AV, Haac BE, Fancher KS, Holbrook AE, Kemler R, Solter D, Knowles BB (2004) Maternal beta-catenin and E-cadherin in mouse development. Development 131(18):4435–4445. doi: 10.1242/dev.01316 PubMedCrossRefGoogle Scholar
  32. Esen E, Chen J, Karner CM, Okunade AL, Patterson BW, Long F (2013) WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation. Cell Metab 17(5):745–755. doi: 10.1016/j.cmet.2013.03.017 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Farin HF, Jordens I, Mosa MH, Basak O, Korving J, Tauriello DV, de Punder K, Angers S, Peters PJ, Maurice MM, Clevers H (2016) Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature. doi: 10.1038/nature16937 PubMedGoogle Scholar
  34. Fausto N (2000) Liver regeneration. J Hepatol 32(1 Suppl):19–31PubMedCrossRefGoogle Scholar
  35. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61(5):759–767PubMedCrossRefGoogle Scholar
  36. Flanagan DJ, Phesse TJ, Barker N, Schwab RH, Amin N, Malaterre J, Stange DE, Nowell CJ, Currie SA, Saw JT, Beuchert E, Ramsay RG, Sansom OJ, Ernst M, Clevers H, Vincan E (2015) Frizzled7 functions as a Wnt receptor in intestinal epithelial Lgr5(+) stem cells. Stem Cell Reports 4(5):759–767. doi: 10.1016/j.stemcr.2015.03.003 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Fodde R, Kuipers J, Rosenberg C, Smits R, Kielman M, Gaspar C, van Es JH, Breukel C, Wiegant J, Giles RH, Clevers H (2001a) Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat Cell Biol 3(4):433–438. doi: 10.1038/35070129 PubMedCrossRefGoogle Scholar
  38. Fodde R, Smits R, Clevers H (2001b) APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer 1(1):55–67. doi: 10.1038/35094067 PubMedCrossRefGoogle Scholar
  39. Fossat N, Jones V, Khoo PL, Bogani D, Hardy A, Steiner K, Mukhopadhyay M, Westphal H, Nolan PM, Arkell R, Tam PP (2011) Stringent requirement of a proper level of canonical WNT signalling activity for head formation in mouse embryo. Development 138(4):667–676. doi: 10.1242/dev.052803 PubMedCrossRefGoogle Scholar
  40. Funayama N, Fagotto F, McCrea P, Gumbiner BM (1995) Embryonic axis induction by the armadillo repeat domain of beta-catenin: evidence for intracellular signaling. J Cell Biol 128(5):959–968PubMedCrossRefGoogle Scholar
  41. Gao C, Chen YG (2010) Dishevelled: the hub of Wnt signaling. Cell Signal 22(5):717–727. doi: 10.1016/j.cellsig.2009.11.021 PubMedCrossRefGoogle Scholar
  42. Goentoro L, Kirschner MW (2009) Evidence that fold-change, and not absolute level, of beta-catenin dictates Wnt signaling. Mol Cell 36(5):872–884. doi: 10.1016/j.molcel.2009.11.017 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Goldstein B, Takeshita H, Mizumoto K, Sawa H (2006) Wnt signals can function as positional cues in establishing cell polarity. Dev Cell 10(3):391–396. doi: 10.1016/j.devcel.2005.12.016 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Gong Y, Mo C, Fraser SE (2004) Planar cell polarity signalling controls cell division orientation during zebrafish gastrulation. Nature 430(7000):689–693. doi: 10.1038/nature02796 PubMedCrossRefGoogle Scholar
  45. Green RA, Wollman R, Kaplan KB (2005) APC and EB1 function together in mitosis to regulate spindle dynamics and chromosome alignment. Mol Biol Cell 16(10):4609–4622. doi: 10.1091/mbc.E05-03-0259 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Guidato S, Itasaki N (2007) Wise retained in the endoplasmic reticulum inhibits Wnt signaling by reducing cell surface LRP6. Dev Biol 310(2):250–263. doi: 10.1016/j.ydbio.2007.07.033 PubMedCrossRefGoogle Scholar
  47. Ha NC, Tonozuka T, Stamos JL, Choi HJ, Weis WI (2004) Mechanism of phosphorylation-dependent binding of APC to beta-catenin and its role in beta-catenin degradation. Mol Cell 15(4):511–521. doi: 10.1016/j.molcel.2004.08.010 PubMedCrossRefGoogle Scholar
  48. Habib SJ, Chen BC, Tsai FC, Anastassiadis K, Meyer T, Betzig E, Nusse R (2013) A localized Wnt signal orients asymmetric stem cell division in vitro. Science 339(6126):1445–1448. doi: 10.1126/science.1231077 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hadjihannas MV, Brückner M, Jerchow B, Birchmeier W, Dietmaier W, Behrens J (2006) Aberrant Wnt/beta-catenin signaling can induce chromosomal instability in colon cancer. Proc Natl Acad Sci USA 103(28):10747–10752. doi: 10.1073/pnas.0604206103 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hadjihannas MV, Brückner M, Behrens J (2010) Conductin/axin2 and Wnt signalling regulates centrosome cohesion. EMBO Rep 11(4):317–324. doi: 10.1038/embor.2010.23 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Haegebarth A, Clevers H (2009) Wnt signaling, lgr5, and stem cells in the intestine and skin. Am J Pathol 174(3):715–721. doi: 10.2353/ajpath.2009.080758 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Haegel H, Larue L, Ohsugi M, Fedorov L, Herrenknecht K, Kemler R (1995) Lack of beta-catenin affects mouse development at gastrulation. Development 121(11):3529–3537PubMedGoogle Scholar
  53. Harwood AJ (2008a) Dictyostelium development: a prototypic Wnt pathway? Methods Mol Biol 469:21–32. doi: 10.1007/978-1-60327-469-2_2 PubMedCrossRefGoogle Scholar
  54. Harwood AJ (2008b) Use of the Dictyostelium stalk cell assay to monitor GSK-3 regulation. Methods Mol Biol 469:39–43. doi: 10.1007/978-1-60327-469-2_4 PubMedCrossRefGoogle Scholar
  55. He X (2004) Wnt signaling went derailed again: a new track via the LIN-18 receptor? Cell 118(6):668–670. doi: 10.1016/j.cell.2004.09.009 PubMedCrossRefGoogle Scholar
  56. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281(5382):1509–1512PubMedCrossRefGoogle Scholar
  57. Heasman J, Crawford A, Goldstone K, Garner-Hamrick P, Gumbiner B, McCrea P, Kintner C, Noro CY, Wylie C (1994) Overexpression of cadherins and underexpression of beta-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell 79(5):791–803PubMedCrossRefGoogle Scholar
  58. Herman MA, Vassilieva LL, Horvitz HR, Shaw JE, Herman RK (1995) The C. elegans gene lin-44, which controls the polarity of certain asymmetric cell divisions, encodes a Wnt protein and acts cell nonautonomously. Cell 83(1):101–110PubMedCrossRefGoogle Scholar
  59. Hernández AR, Klein AM, Kirschner MW (2012) Kinetic responses of β-catenin specify the sites of Wnt control. Science 338(6112):1337–1340. doi: 10.1126/science.1228734 PubMedCrossRefGoogle Scholar
  60. Hobmayer B, Rentzsch F, Kuhn K, Happel CM, von Laue CC, Snyder P, Rothbächer U, Holstein TW (2000) WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature 407(6801):186–189. doi: 10.1038/35025063 PubMedCrossRefGoogle Scholar
  61. Holstein TW (2012) The evolution of the Wnt pathway. Cold Spring Harb Perspect Biol 4(7):a007922. doi: 10.1101/cshperspect.a007922 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Houghton FD, Thompson JG, Kennedy CJ, Leese HJ (1996) Oxygen consumption and energy metabolism of the early mouse embryo. Mol Reprod Dev 44(4):476–485. doi: 10.1002/(SICI)1098-2795(199608)44:4<476::AID-MRD7>3.0.CO;2-I PubMedCrossRefGoogle Scholar
  63. Hsieh JC, Kodjabachian L, Rebbert ML, Rattner A, Smallwood PM, Samos CH, Nusse R, Dawid IB, Nathans J (1999) A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 398(6726):431–436. doi: 10.1038/18899 PubMedCrossRefGoogle Scholar
  64. Huang YL, Niehrs C (2014) Polarized Wnt signaling regulates ectodermal cell fate in Xenopus. Dev Cell 29(2):250–257. doi: 10.1016/j.devcel.2014.03.015 PubMedCrossRefGoogle Scholar
  65. Huang P, Senga T, Hamaguchi M (2007a) A novel role of phospho-beta-catenin in microtubule regrowth at centrosome. Oncogene 26(30):4357–4371. doi: 10.1038/sj.onc.1210217 PubMedCrossRefGoogle Scholar
  66. Huang S, Shetty P, Robertson SM, Lin R (2007b) Binary cell fate specification during C. elegans embryogenesis driven by reiterated reciprocal asymmetry of TCF POP-1 and its coactivator beta-catenin SYS-1. Development 134(14):2685–2695. doi: 10.1242/dev.008268 PubMedCrossRefGoogle Scholar
  67. Huang J, Nguyen-McCarty M, Hexner EO, Danet-Desnoyers G, Klein PS (2012) Maintenance of hematopoietic stem cells through regulation of Wnt and mTOR pathways. Nat Med 18(12):1778–1785. doi: 10.1038/nm.2984 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Huch M, Dorrell C, Boj SF, van Es JH, Li VS, van de Wetering M, Sato T, Hamer K, Sasaki N, Finegold MJ, Haft A, Vries RG, Grompe M, Clevers H (2013) In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494(7436):247–250. doi: 10.1038/nature11826 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Huels DJ, Ridgway RA, Radulescu S, Leushacke M, Campbell AD, Biswas S, Leedham S, Serra S, Chetty R, Moreaux G, Parry L, Matthews J, Song F, Hedley A, Kalna G, Ceteci F, Reed KR, Meniel VS, Maguire A, Doyle B, Söderberg O, Barker N, Watson A, Larue L, Clarke AR, Sansom OJ (2015) E-cadherin can limit the transforming properties of activating β-catenin mutations. EMBO J 34(18):2321–2333. doi: 10.15252/embj.201591739 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Huelsken J, Birchmeier W (2001) New aspects of Wnt signaling pathways in higher vertebrates. Curr Opin Genet Dev 11(5):547–553PubMedCrossRefGoogle Scholar
  71. Huelsken J, Vogel R, Brinkmann V, Erdmann B, Birchmeier C, Birchmeier W (2000) Requirement for beta-catenin in anterior-posterior axis formation in mice. J Cell Biol 148(3):567–578PubMedPubMedCentralCrossRefGoogle Scholar
  72. Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A (1998) Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J 17(5):1371–1384. doi: 10.1093/emboj/17.5.1371 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Jaks V, Barker N, Kasper M, van Es JH, Snippert HJ, Clevers H, Toftgård R (2008) Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet 40(11):1291–1299. doi: 10.1038/ng.239 PubMedCrossRefGoogle Scholar
  74. Jan TA, Chai R, Sayyid ZN, van Amerongen R, Xia A, Wang T, Sinkkonen ST, Zeng YA, Levin JR, Heller S, Nusse R, Cheng AG (2013) Tympanic border cells are Wnt-responsive and can act as progenitors for postnatal mouse cochlear cells. Development 140(6):1196–1206. doi: 10.1242/dev.087528 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Janda CY, Waghray D, Levin AM, Thomas C, Garcia KC (2012) Structural basis of Wnt recognition by Frizzled. Science 337(6090):59–64. doi: 10.1126/science.1222879 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Jang H, Yang J, Lee E, Cheong JH (2015) Metabolism in embryonic and cancer stemness. Arch Pharm Res 38(3):381–388. doi: 10.1007/s12272-015-0558-y PubMedCrossRefGoogle Scholar
  77. Jung A, Schrauder M, Oswald U, Knoll C, Sellberg P, Palmqvist R, Niedobitek G, Brabletz T, Kirchner T (2001) The invasion front of human colorectal adenocarcinomas shows co-localization of nuclear beta-catenin, cyclin D1, and p16INK4A and is a region of low proliferation. Am J Pathol 159(5):1613–1617PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kakugawa S, Langton PF, Zebisch M, Howell SA, Chang TH, Liu Y, Feizi T, Bineva G, O’Reilly N, Snijders AP, Jones EY, Vincent JP (2015) Notum deacylates Wnt proteins to suppress signalling activity. Nature 519(7542):187–192. doi: 10.1038/nature14259 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kalani MY, Cheshier SH, Cord BJ, Bababeygy SR, Vogel H, Weissman IL, Palmer TD, Nusse R (2008) Wnt-mediated self-renewal of neural stem/progenitor cells. Proc Natl Acad Sci USA 105(44):16970–16975. doi: 10.1073/pnas.0808616105 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kawakami Y, Rodriguez Esteban C, Raya M, Kawakami H, Martí M, Dubova I, Izpisúa Belmonte JC (2006) Wnt/beta-catenin signaling regulates vertebrate limb regeneration. Genes Dev 20(23):3232–3237. doi: 10.1101/gad.1475106 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kemp C, Willems E, Abdo S, Lambiv L, Leyns L (2005) Expression of all Wnt genes and their secreted antagonists during mouse blastocyst and postimplantation development. Dev Dyn 233(3):1064–1075. doi: 10.1002/dvdy.20408 PubMedCrossRefGoogle Scholar
  82. Kikuchi K, Niikura Y, Kitagawa K, Kikuchi A (2010) Dishevelled, a Wnt signalling component, is involved in mitotic progression in cooperation with Plk1. EMBO J 29(20):3470–3483. doi: 10.1038/emboj.2010.221 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Kopp JL, Grompe M, Sander M (2016) Stem cells versus plasticity in liver and pancreas regeneration. Nat Cell Biol 18(3):238–245. doi: 10.1038/ncb3309 PubMedCrossRefGoogle Scholar
  84. Koukourakis MI, Giatromanolaki A, Harris AL, Sivridis E (2006) Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res 66(2):632–637. doi: 10.1158/0008-5472.CAN-05-3260 PubMedCrossRefGoogle Scholar
  85. Kusserow A, Pang K, Sturm C, Hrouda M, Lentfer J, Schmidt HA, Technau U, von Haeseler A, Hobmayer B, Martindale MQ, Holstein TW (2005) Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433(7022):156–160. doi: 10.1038/nature03158 PubMedCrossRefGoogle Scholar
  86. Lamb R, Bonuccelli G, Ozsvári B, Peiris-Pagès M, Fiorillo M, Smith DL, Bevilacqua G, Mazzanti CM, McDonnell LA, Naccarato AG, Chiu M, Wynne L, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2015) Mitochondrial mass, a new metabolic biomarker for stem-like cancer cells: understanding WNT/FGF-driven anabolic signaling. Oncotarget 6(31):30453–30471. doi: 10.18632/oncotarget.5852 PubMedPubMedCentralGoogle Scholar
  87. Lander R, Petersen CP (2016) Wnt, Ptk7, and FGFRL expression gradients control trunk positional identity in planarian regeneration. Elife 5. doi: 10.7554/eLife.12850
  88. Larabell CA, Torres M, Rowning BA, Yost C, Miller JR, Wu M, Kimelman D, Moon RT (1997) Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in beta-catenin that are modulated by the Wnt signaling pathway. J Cell Biol 136(5):1123–1136PubMedPubMedCentralCrossRefGoogle Scholar
  89. Lawrence PA, Casal J, Struhl G (2002) Towards a model of the organisation of planar polarity and pattern in the Drosophila abdomen. Development 129(11):2749–2760PubMedGoogle Scholar
  90. Leclère L, Bause M, Sinigaglia C, Steger J, Rentzsch F (2016) Development of the aboral domain in Nematostella requires β-catenin and the opposing activities of Six3/6 and Frizzled5/8. Development 143(10):1766–1777. doi: 10.1242/dev.120931 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lee SY, Jeon HM, Ju MK, Kim CH, Yoon G, Han SI, Park HG, Kang HS (2012) Wnt/Snail signaling regulates cytochrome C oxidase and glucose metabolism. Cancer Res 72(14):3607–3617. doi: 10.1158/0008-5472.CAN-12-0006 PubMedCrossRefGoogle Scholar
  92. Lee SH, Johnson DT, Luong R, Yu EJ, Cunha GR, Nusse R, Sun Z (2015) Wnt/β-catenin-responsive cells in prostatic development and regeneration. Stem Cells 33(11):3356–3367. doi: 10.1002/stem.2096 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Leese HJ (2012) Metabolism of the preimplantation embryo: 40 years on. Reproduction 143(4):417–427. doi: 10.1530/REP-11-0484 PubMedCrossRefGoogle Scholar
  94. Leese HJ, Barton AM (1984) Pyruvate and glucose uptake by mouse ova and preimplantation embryos. J Reprod Fertil 72(1):9–13PubMedCrossRefGoogle Scholar
  95. Lehoczky JA, Tabin CJ (2015) Lgr6 marks nail stem cells and is required for digit tip regeneration. Proc Natl Acad Sci USA 112(43):13249–13254. doi: 10.1073/pnas.1518874112 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Lengfeld T, Watanabe H, Simakov O, Lindgens D, Gee L, Law L, Schmidt HA, Ozbek S, Bode H, Holstein TW (2009) Multiple Wnts are involved in Hydra organizer formation and regeneration. Dev Biol 330(1):186–199. doi: 10.1016/j.ydbio.2009.02.004 PubMedCrossRefGoogle Scholar
  97. Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE, Wu D (2005) Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem 280(20):19883–19887. doi: 10.1074/jbc.M413274200 PubMedCrossRefGoogle Scholar
  98. Li VS, Ng SS, Boersema PJ, Low TY, Karthaus WR, Gerlach JP, Mohammed S, Heck AJ, Maurice MM, Mahmoudi T, Clevers H (2012) Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell 149(6):1245–1256. doi: 10.1016/j.cell.2012.05.002 PubMedCrossRefGoogle Scholar
  99. Li N, Yousefi M, Nakauka-Ddamba A, Tobias JW, Jensen ST, Morrisey EE, Lengner CJ (2016) Heterogeneity in readouts of canonical wnt pathway activity within intestinal crypts. Dev Dyn 245(8):822–33. doi: 10.1002/dvdy.24423
  100. Lichtenberger BM, Mastrogiannaki M, Watt FM (2016) Epidermal β-catenin activation remodels the dermis via paracrine signalling to distinct fibroblast lineages. Nat Commun 7:10537. doi: 10.1038/ncomms10537 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Lien WH, Fuchs E (2014) Wnt some lose some: transcriptional governance of stem cells by Wnt/β-catenin signaling. Genes Dev 28(14):1517–1532. doi: 10.1101/gad.244772.114 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Lim X, Tan SH, Koh WL, Chau RM, Yan KS, Kuo CJ, van Amerongen R, Klein AM, Nusse R (2013) Interfollicular epidermal stem cells self-renew via autocrine Wnt signaling. Science 342(6163):1226–1230. doi: 10.1126/science.1239730 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Lim X, Tan SH, Yu KL, Lim SB, Nusse R (2016) Axin2 marks quiescent hair follicle bulge stem cells that are maintained by autocrine Wnt/β-catenin signaling. Proc Natl Acad Sci USA 113(11):E1498–E1505. doi: 10.1073/pnas.1601599113 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Lin K, Wang S, Julius MA, Kitajewski J, Moos M, Luyten FP (1997) The cysteine-rich frizzled domain of Frzb-1 is required and sufficient for modulation of Wnt signaling. Proc Natl Acad Sci USA 94(21):11196–11200PubMedPubMedCentralCrossRefGoogle Scholar
  105. Lin SY, Xia W, Wang JC, Kwong KY, Spohn B, Wen Y, Pestell RG, Hung MC (2000) Beta-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc Natl Acad Sci USA 97(8):4262–4266. doi: 10.1073/pnas.060025397 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Liu P, Wakamiya M, Shea MJ, Albrecht U, Behringer RR, Bradley A (1999) Requirement for Wnt3 in vertebrate axis formation. Nat Genet 22(4):361–365. doi: 10.1038/11932 PubMedCrossRefGoogle Scholar
  107. Liu H, Mohamed O, Dufort D, Wallace VA (2003) Characterization of Wnt signaling components and activation of the Wnt canonical pathway in the murine retina. Dev Dyn 227(3):323–334. doi: 10.1002/dvdy.10315 PubMedCrossRefGoogle Scholar
  108. Liu H, Thurig S, Mohamed O, Dufort D, Wallace VA (2006) Mapping canonical Wnt signaling in the developing and adult retina. Invest Ophthalmol Vis Sci 47(11):5088–5097. doi: 10.1167/iovs.06-0403 PubMedCrossRefGoogle Scholar
  109. Liu H, Xu S, Wang Y, Mazerolle C, Thurig S, Coles BL, Ren JC, Taketo MM, van der Kooy D, Wallace VA (2007) Ciliary margin transdifferentiation from neural retina is controlled by canonical Wnt signaling. Dev Biol 308(1):54–67. doi: 10.1016/j.ydbio.2007.04.052 PubMedCrossRefGoogle Scholar
  110. Liu N, Shi S, Deng M, Tang L, Zhang G, Ding B, Liu W, Liu Y, Shi H, Liu L, Jin Y (2011) High levels of β-catenin signaling reduce osteogenic differentiation of stem cells in inflammatory microenvironments through inhibition of the noncanonical Wnt pathway. J Bone Miner Res 26(9):2082–2095. doi: 10.1002/jbmr.440 PubMedCrossRefGoogle Scholar
  111. Liu SY, Selck C, Friedrich B, Lutz R, Vila-Farré M, Dahl A, Brandl H, Lakshmanaperumal N, Henry I, Rink JC (2013) Reactivating head regrowth in a regeneration-deficient planarian species. Nature 500(7460):81–84. doi: 10.1038/nature12414 PubMedCrossRefGoogle Scholar
  112. Lloyd S, Fleming TP, Collins JE (2003) Expression of Wnt genes during mouse preimplantation development. Gene Expr Patterns 3(3):309–312PubMedCrossRefGoogle Scholar
  113. Lo Celso C, Prowse DM, Watt FM (2004) Transient activation of beta-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development 131(8):1787–1799. doi: 10.1242/dev.01052 CrossRefPubMedGoogle Scholar
  114. Logan CY, Miller JR, Ferkowicz MJ, McClay DR (1999) Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo. Development 126(2):345–357PubMedGoogle Scholar
  115. Losick VP, Morris LX, Fox DT, Spradling A (2011) Drosophila stem cell niches: a decade of discovery suggests a unified view of stem cell regulation. Dev Cell 21(1):159–171. doi: 10.1016/j.devcel.2011.06.018 CrossRefPubMedGoogle Scholar
  116. Lowndes M, Rotherham M, Price JC, El Haj AJ, Habib SJ (2016) Immobilized WNT proteins act as a stem cell niche for tissue engineering. Stem Cell Reports 7(1):126–137. doi: 10.1016/j.stemcr.2016.06.004 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Ma L, Wang HY (2007) Mitogen-activated protein kinase p38 regulates the Wnt/cyclic GMP/Ca2+ non-canonical pathway. J Biol Chem 282(39):28980–28990. doi: 10.1074/jbc.M702840200 PubMedCrossRefGoogle Scholar
  118. MacDonald BT, He X (2012) A finger on the pulse of Wnt receptor signaling. Cell Res 22(10):1410–1412. doi: 10.1038/cr.2012.91 PubMedPubMedCentralCrossRefGoogle Scholar
  119. MacDonald BT, Hien A, Zhang X, Iranloye O, Virshup DM, Waterman ML, He X (2014) Disulfide bond requirements for active Wnt ligands. J Biol Chem 289(26):18122–18136. doi: 10.1074/jbc.M114.575027 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Malanchi I, Peinado H, Kassen D, Hussenet T, Metzger D, Chambon P, Huber M, Hohl D, Cano A, Birchmeier W, Huelsken J (2008) Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature 452(7187):650–653. doi: 10.1038/nature06835 PubMedCrossRefGoogle Scholar
  121. Martinez NP, Kanno DT, Pereira JA, Cardinalli IA, Priolli DG (2010) Beta-catenin and E-cadherin tissue “content” as prognostic markers in left-side colorectal cancer. Cancer Biomark 8(3):129–135. doi: 10.3233/DMA-2011-0843 PubMedCrossRefGoogle Scholar
  122. Metcalfe C, Mendoza-Topaz C, Mieszczanek J, Bienz M (2010) Stability elements in the LRP6 cytoplasmic tail confer efficient signalling upon DIX-dependent polymerization. J Cell Sci 123(Pt 9):1588–1599. doi: 10.1242/jcs.067546 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Mikels AJ, Nusse R (2006) Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol 4(4):e115. doi: 10.1371/journal.pbio.0040115 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Mills KM, Brocardo MG, Henderson BR (2016) APC binds the Miro/Milton motor complex to stimulate transport of mitochondria to the plasma membrane. Mol Biol Cell 27(3):466–482. doi: 10.1091/mbc.E15-09-0632 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Mohamed OA, Dufort D, Clarke HJ (2004) Expression and estradiol regulation of Wnt genes in the mouse blastocyst identify a candidate pathway for embryo-maternal signaling at implantation. Biol Reprod 71(2):417–424. doi: 10.1095/biolreprod.103.025692 PubMedCrossRefGoogle Scholar
  126. Momose T, Derelle R, Houliston E (2008) A maternally localised Wnt ligand required for axial patterning in the cnidarian Clytia hemisphaerica. Development 135(12):2105–2113. doi: 10.1242/dev.021543 PubMedCrossRefGoogle Scholar
  127. Moon RT, Kohn AD, De Ferrari GV, Kaykas A (2004) WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 5(9):691–701. doi: 10.1038/nrg1427 PubMedCrossRefGoogle Scholar
  128. Morata G, Struhl G (2014) Developmental biology: tethered wings. Nature 505(7482):162–163. doi: 10.1038/nature12848 PubMedCrossRefGoogle Scholar
  129. Moussaieff A, Kogan NM, Aberdam D (2015) Concise review: energy metabolites: key mediators of the epigenetic state of pluripotency. Stem Cells 33(8):2374–2380. doi: 10.1002/stem.2041 PubMedCrossRefGoogle Scholar
  130. Mulligan KA, Fuerer C, Ching W, Fish M, Willert K, Nusse R (2012) Secreted Wingless-interacting molecule (Swim) promotes long-range signaling by maintaining Wingless solubility. Proc Natl Acad Sci USA 109(2):370–377. doi: 10.1073/pnas.1119197109 PubMedCrossRefGoogle Scholar
  131. Nakamura K, Kim S, Ishidate T, Bei Y, Pang K, Shirayama M, Trzepacz C, Brownell DR, Mello CC (2005) Wnt signaling drives WRM-1/beta-catenin asymmetries in early C. elegans embryos. Genes Dev 19(15):1749–1754. doi: 10.1101/gad.1323705 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Neumann CJ, Cohen SM (1997) Long-range action of Wingless organizes the dorsal-ventral axis of the Drosophila wing. Development 124(4):871–880PubMedGoogle Scholar
  133. Niehrs C (2012) The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol 13(12):767–779. doi: 10.1038/nrm3470 PubMedCrossRefGoogle Scholar
  134. Niehrs C, Acebron SP (2012) Mitotic and mitogenic Wnt signalling. EMBO J 31(12):2705–2713. doi: 10.1038/emboj.2012.124 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Nolo R, Abbott LA, Bellen HJ (2000) Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila. Cell 102(3):349–362PubMedCrossRefGoogle Scholar
  136. Nusse R, Varmus HE (1982) Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31(1):99–109PubMedCrossRefGoogle Scholar
  137. Ohno S (2007) Extrinsic Wnt signalling controls the polarity component aPKC. Nat Cell Biol 9(7):738–740. doi: 10.1038/ncb0707-738 PubMedCrossRefGoogle Scholar
  138. Ouspenskaia T, Matos I, Mertz AF, Fiore VF, Fuchs E (2016) WNT-SHH antagonism specifies and expands stem cells prior to niche formation. Cell 164(1–2):156–169. doi: 10.1016/j.cell.2015.11.058 PubMedPubMedCentralCrossRefGoogle Scholar
  139. Pang K, Ryan JF, Mullikin JC, Baxevanis AD, Martindale MQ, Program NCS (2010) Genomic insights into Wnt signaling in an early diverging metazoan, the ctenophore Mnemiopsis leidyi. Evodevo 1(1):10. doi: 10.1186/2041-9139-1-10 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Pate KT, Stringari C, Sprowl-Tanio S, Wang K, TeSlaa T, Hoverter NP, McQuade MM, Garner C, Digman MA, Teitell MA, Edwards RA, Gratton E, Waterman ML (2014) Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. EMBO J 33(13):1454–1473. doi: 10.15252/embj.201488598 PubMedPubMedCentralGoogle Scholar
  141. Petersen CP, Reddien PW (2009a) Wnt signaling and the polarity of the primary body axis. Cell 139(6):1056–1068. doi: 10.1016/j.cell.2009.11.035 PubMedCrossRefGoogle Scholar
  142. Petersen CP, Reddien PW (2009b) A wound-induced Wnt expression program controls planarian regeneration polarity. Proc Natl Acad Sci USA 106(40):17061–17066. doi: 10.1073/pnas.0906823106 PubMedPubMedCentralCrossRefGoogle Scholar
  143. Planas-Paz L, Orsini V, Boulter L, Calabrese D, Pikiolek M, Nigsch F, Xie Y, Roma G, Donovan A, Marti P, Beckmann N, Dill MT, Carbone W, Bergling S, Isken A, Mueller M, Kinzel B, Yang Y, Mao X, Nicholson TB, Zamponi R, Capodieci P, Valdez R, Rivera D, Loew A, Ukomadu C, Terracciano LM, Bouwmeester T, Cong F, Heim MH, Forbes SJ, Ruffner H, Tchorz JS (2016) The RSPO-LGR4/5-ZNRF3/RNF43 module controls liver zonation and size. Nat Cell Biol 18(5):467–479. doi: 10.1038/ncb3337 PubMedCrossRefGoogle Scholar
  144. Polakis P (2012) Wnt signaling in cancer. Cold Spring Harb Perspect Biol 4(5). doi: 10.1101/cshperspect.a008052
  145. Poss KD, Shen J, Keating MT (2000) Induction of lef1 during zebrafish fin regeneration. Dev Dyn 219(2):282–286. doi: 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1045>3.0.CO;2-C PubMedCrossRefGoogle Scholar
  146. Quyn AJ, Appleton PL, Carey FA, Steele RJ, Barker N, Clevers H, Ridgway RA, Sansom OJ, Näthke IS (2010) Spindle orientation bias in gut epithelial stem cell compartments is lost in precancerous tissue. Cell Stem Cell 6(2):175–181. doi: 10.1016/j.stem.2009.12.007 PubMedCrossRefGoogle Scholar
  147. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K, Hintz L, Nusse R, Weissman IL (2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423(6938):409–414. doi: 10.1038/nature01593 PubMedCrossRefGoogle Scholar
  148. Rinkevich Y, Montoro DT, Contreras-Trujillo H, Harari-Steinberg O, Newman AM, Tsai JM, Lim X, Van-Amerongen R, Bowman A, Januszyk M, Pleniceanu O, Nusse R, Longaker MT, Weissman IL, Dekel B (2014a) In vivo clonal analysis reveals lineage-restricted progenitor characteristics in mammalian kidney development, maintenance, and regeneration. Cell Rep 7(4):1270–1283. doi: 10.1016/j.celrep.2014.04.018 PubMedPubMedCentralCrossRefGoogle Scholar
  149. Rinkevich Y, Montoro DT, Muhonen E, Walmsley GG, Lo D, Hasegawa M, Januszyk M, Connolly AJ, Weissman IL, Longaker MT (2014b) Clonal analysis reveals nerve-dependent and independent roles on mammalian hind limb tissue maintenance and regeneration. Proc Natl Acad Sci USA 111(27):9846–9851. doi: 10.1073/pnas.1410097111 PubMedPubMedCentralCrossRefGoogle Scholar
  150. Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P (1996) Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 272(5264):1023–1026PubMedCrossRefGoogle Scholar
  151. Ryall JG, Cliff T, Dalton S, Sartorelli V (2015) Metabolic Reprogramming of Stem Cell Epigenetics. Cell Stem Cell 17(6):651–662. doi: 10.1016/j.stem.2015.11.012 PubMedPubMedCentralCrossRefGoogle Scholar
  152. Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, Barker N, Shroyer NF, van de Wetering M, Clevers H (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469(7330):415–418. doi: 10.1038/nature09637 PubMedCrossRefGoogle Scholar
  153. Schneider SQ, Bowerman B (2007) beta-Catenin asymmetries after all animal/vegetal- oriented cell divisions in Platynereis dumerilii embryos mediate binary cell-fate specification. Dev Cell 13(1):73–86. doi: 10.1016/j.devcel.2007.05.002 PubMedCrossRefGoogle Scholar
  154. Schneider S, Steinbeisser H, Warga RM, Hausen P (1996) Beta-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech Dev 57(2):191–198PubMedCrossRefGoogle Scholar
  155. Semënov MV, Tamai K, Brott BK, Kühl M, Sokol S, He X (2001) Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr Biol 11(12):951–961PubMedCrossRefGoogle Scholar
  156. Semënov M, Tamai K, He X (2005) SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem 280(29):26770–26775. doi: 10.1074/jbc.M504308200 PubMedCrossRefGoogle Scholar
  157. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE (2006) Generation of a functional mammary gland from a single stem cell. Nature 439(7072):84–88. doi: 10.1038/nature04372 PubMedCrossRefGoogle Scholar
  158. Shi F, Hu L, Edge AS (2013) Generation of hair cells in neonatal mice by β-catenin overexpression in Lgr5-positive cochlear progenitors. Proc Natl Acad Sci USA 110(34):13851–13856. doi: 10.1073/pnas.1219952110 PubMedPubMedCentralCrossRefGoogle Scholar
  159. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, Ben-Ze’ev A (1999) The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 96(10):5522–5527PubMedPubMedCentralCrossRefGoogle Scholar
  160. Shyh-Chang N, Daley GQ, Cantley LC (2013) Stem cell metabolism in tissue development and aging. Development 140(12):2535–2547. doi: 10.1242/dev.091777 PubMedPubMedCentralCrossRefGoogle Scholar
  161. Sikes JM, Newmark PA (2013) Restoration of anterior regeneration in a planarian with limited regenerative ability. Nature 500(7460):77–80. doi: 10.1038/nature12403 PubMedPubMedCentralCrossRefGoogle Scholar
  162. Sivasankaran R, Calleja M, Morata G, Basler K (2000) The Wingless target gene Dfz3 encodes a new member of the Drosophila Frizzled family. Mech Dev 91(1–2):427–431PubMedCrossRefGoogle Scholar
  163. Smith WC, Harland RM (1991) Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing center. Cell 67(4):753–765PubMedCrossRefGoogle Scholar
  164. Snippert HJ, Haegebarth A, Kasper M, Jaks V, van Es JH, Barker N, van de Wetering M, van den Born M, Begthel H, Vries RG, Stange DE, Toftgård R, Clevers H (2010a) Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327(5971):1385–1389. doi: 10.1126/science.1184733 PubMedCrossRefGoogle Scholar
  165. Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-Veenboer C, Barker N, Klein AM, van Rheenen J, Simons BD, Clevers H (2010b) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143(1):134–144. doi: 10.1016/j.cell.2010.09.016 PubMedCrossRefGoogle Scholar
  166. Sokol S, Christian JL, Moon RT, Melton DA (1991) Injected Wnt RNA induces a complete body axis in Xenopus embryos. Cell 67(4):741–752PubMedCrossRefGoogle Scholar
  167. Sokol SY, Klingensmith J, Perrimon N, Itoh K (1995) Dorsalizing and neuralizing properties of Xdsh, a maternally expressed Xenopus homolog of dishevelled. Development 121(10):3487PubMedGoogle Scholar
  168. Stoick-Cooper CL, Moon RT, Weidinger G (2007a) Advances in signaling in vertebrate regeneration as a prelude to regenerative medicine. Genes Dev 21(11):1292–1315. doi: 10.1101/gad.1540507 PubMedCrossRefGoogle Scholar
  169. Stoick-Cooper CL, Weidinger G, Riehle KJ, Hubbert C, Major MB, Fausto N, Moon RT (2007b) Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development 134(3):479–489. doi: 10.1242/dev.001123 PubMedCrossRefGoogle Scholar
  170. Strand M, Micchelli CA (2011) Quiescent gastric stem cells maintain the adult Drosophila stomach. Proc Natl Acad Sci USA 108(43):17696–17701. doi: 10.1073/pnas.1109794108 PubMedPubMedCentralCrossRefGoogle Scholar
  171. Sureda-Gómez M, Pascual-Carreras E, Adell T (2015) Posterior Wnts Have Distinct Roles in Specification and Patterning of the Planarian Posterior Region. Int J Mol Sci 16(11):26543–26554. doi: 10.3390/ijms161125970 PubMedPubMedCentralCrossRefGoogle Scholar
  172. Takada R, Satomi Y, Kurata T, Ueno N, Norioka S, Kondoh H, Takao T, Takada S (2006) Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev Cell 11(6):791–801. doi: 10.1016/j.devcel.2006.10.003 PubMedCrossRefGoogle Scholar
  173. Takase HM, Nusse R (2016) Paracrine Wnt/β-catenin signaling mediates proliferation of undifferentiated spermatogonia in the adult mouse testis. Proc Natl Acad Sci USA 113(11):E1489–E1497. doi: 10.1073/pnas.1601461113 PubMedPubMedCentralCrossRefGoogle Scholar
  174. Takeo M, Chou WC, Sun Q, Lee W, Rabbani P, Loomis C, Taketo MM, Ito M (2013) Wnt activation in nail epithelium couples nail growth to digit regeneration. Nature 499(7457):228–232. doi: 10.1038/nature12214 PubMedPubMedCentralCrossRefGoogle Scholar
  175. Takeshita H, Sawa H (2005) Asymmetric cortical and nuclear localizations of WRM-1/beta-catenin during asymmetric cell division in C. elegans. Genes Dev 19(15):1743–1748. doi: 10.1101/gad.1322805 PubMedPubMedCentralCrossRefGoogle Scholar
  176. Tan DW, Barker N (2014) Intestinal stem cells and their defining niche. Curr Top Dev Biol 107:77–107. doi: 10.1016/B978-0-12-416022-4.00003-2 PubMedCrossRefGoogle Scholar
  177. Tan SH, Senarath-Yapa K, Chung MT, Longaker MT, Wu JY, Nusse R (2014) Wnts produced by Osterix-expressing osteolineage cells regulate their proliferation and differentiation. Proc Natl Acad Sci USA 111(49):E5262–E5271. doi: 10.1073/pnas.1420463111 PubMedPubMedCentralCrossRefGoogle Scholar
  178. ten Berge D, Kurek D, Blauwkamp T, Koole W, Maas A, Eroglu E, Siu RK, Nusse R (2011) Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells. Nat Cell Biol 13(9):1070–1075. doi: 10.1038/ncb2314 PubMedPubMedCentralCrossRefGoogle Scholar
  179. Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398(6726):422–426. doi: 10.1038/18884 PubMedCrossRefGoogle Scholar
  180. Thrasivoulou C, Millar M, Ahmed A (2013) Activation of intracellular calcium by multiple Wnt ligands and translocation of β-catenin into the nucleus: a convergent model of Wnt/Ca2+ and Wnt/β-catenin pathways. J Biol Chem 288(50):35651–35659. doi: 10.1074/jbc.M112.437913 PubMedPubMedCentralCrossRefGoogle Scholar
  181. Tolwinski NS, Wieschaus E (2004) Rethinking WNT signaling. Trends Genet 20(4):177–181. doi: 10.1016/j.tig.2004.02.003 PubMedCrossRefGoogle Scholar
  182. Umesono Y, Tasaki J, Nishimura Y, Hrouda M, Kawaguchi E, Yazawa S, Nishimura O, Hosoda K, Inoue T, Agata K (2013) The molecular logic for planarian regeneration along the anterior-posterior axis. Nature 500(7460):73–76. doi: 10.1038/nature12359 PubMedCrossRefGoogle Scholar
  183. van Amerongen R, Mikels A, Nusse R (2008) Alternative wnt signaling is initiated by distinct receptors. Sci Signal 1(35):re9. doi: 10.1126/scisignal.135re9
  184. van Amerongen R, Bowman AN, Nusse R (2012) Developmental stage and time dictate the fate of Wnt/β-catenin-responsive stem cells in the mammary gland. Cell Stem Cell 11(3):387–400. doi: 10.1016/j.stem.2012.05.023 PubMedCrossRefGoogle Scholar
  185. van den Heuvel M, Nusse R, Johnston P, Lawrence PA (1989) Distribution of the wingless gene product in Drosophila embryos: a protein involved in cell-cell communication. Cell 59(4):739–749PubMedCrossRefGoogle Scholar
  186. Vermeulen L, De Sousa E Melo F, van der Heijden M, Cameron K, de Jong JH, Borovski T, Tuynman JB, Todaro M, Merz C, Rodermond H, Sprick MR, Kemper K, Richel DJ, Stassi G, Medema JP (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12(5):468–476. doi: 10.1038/ncb2048 PubMedCrossRefGoogle Scholar
  187. Wang QT, Piotrowska K, Ciemerych MA, Milenkovic L, Scott MP, Davis RW, Zernicka-Goetz M (2004) A genomewide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev Cell 6(1):133–144PubMedCrossRefGoogle Scholar
  188. Wang X, Tsai JW, Imai JH, Lian WN, Vallee RB, Shi SH (2009) Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 461(7266):947–955. doi: 10.1038/nature08435 PubMedPubMedCentralCrossRefGoogle Scholar
  189. Wang B, Zhao L, Fish M, Logan CY, Nusse R (2015a) Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver. Nature 524(7564):180–185. doi: 10.1038/nature14863 PubMedPubMedCentralCrossRefGoogle Scholar
  190. Wang D, Cai C, Dong X, Yu QC, Zhang XO, Yang L, Zeng YA (2015b) Identification of multipotent mammary stem cells by protein C receptor expression. Nature 517(7532):81–84. doi: 10.1038/nature13851 PubMedCrossRefGoogle Scholar
  191. Warburg O (1956) On respiratory impairment in cancer cells. Science 124(3215):269–270PubMedGoogle Scholar
  192. Weitzel HE, Illies MR, Byrum CA, Xu R, Wikramanayake AH, Ettensohn CA (2004) Differential stability of beta-catenin along the animal-vegetal axis of the sea urchin embryo mediated by dishevelled. Development 131(12):2947–2956. doi: 10.1242/dev.01152 PubMedCrossRefGoogle Scholar
  193. Widelitz R (2005) Wnt signaling through canonical and non-canonical pathways: recent progress. Growth Factors 23(2):111–116. doi: 10.1080/08977190500125746 PubMedCrossRefGoogle Scholar
  194. Wigfield SM, Winter SC, Giatromanolaki A, Taylor J, Koukourakis ML, Harris AL (2008) PDK-1 regulates lactate production in hypoxia and is associated with poor prognosis in head and neck squamous cancer. Br J Cancer 98(12):1975–1984. doi: 10.1038/sj.bjc.6604356 PubMedPubMedCentralCrossRefGoogle Scholar
  195. Wikramanayake AH, Hong M, Lee PN, Pang K, Byrum CA, Bince JM, Xu R, Martindale MQ (2003) An ancient role for nuclear beta-catenin in the evolution of axial polarity and germ layer segregation. Nature 426(6965):446–450. doi: 10.1038/nature02113 PubMedCrossRefGoogle Scholar
  196. Wikramanayake AH, Peterson R, Chen J, Huang L, Bince JM, McClay DR, Klein WH (2004) Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages. Genesis 39(3):194–205. doi: 10.1002/gene.20045 PubMedCrossRefGoogle Scholar
  197. Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates JR, Nusse R (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423(6938):448–452. doi: 10.1038/nature01611 PubMedCrossRefGoogle Scholar
  198. Xie H, Tranguch S, Jia X, Zhang H, Das SK, Dey SK, Kuo CJ, Wang H (2008) Inactivation of nuclear Wnt-betacatenin signaling limits blastocyst competency for implantation. Development 135(4):717–727. doi: 10.1242/dev.015339 PubMedPubMedCentralCrossRefGoogle Scholar
  199. Xing Y, Clements WK, Kimelman D, Xu W (2003) Crystal structure of a beta-catenin/axin complex suggests a mechanism for the beta-catenin destruction complex. Genes Dev 17(22):2753–2764. doi: 10.1101/gad.1142603 PubMedPubMedCentralCrossRefGoogle Scholar
  200. Xu Q, Wang Y, Dabdoub A, Smallwood PM, Williams J, Woods C, Kelley MW, Jiang L, Tasman W, Zhang K, Nathans J (2004) Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell 116(6):883–895PubMedCrossRefGoogle Scholar
  201. Yamashita YM, Jones DL, Fuller MT (2003) Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 301(5639):1547–1550. doi: 10.1126/science.1087795 PubMedCrossRefGoogle Scholar
  202. Yanagita M, Oka M, Watabe T, Iguchi H, Niida A, Takahashi S, Akiyama T, Miyazono K, Yanagisawa M, Sakurai T (2004) USAG-1: a bone morphogenetic protein antagonist abundantly expressed in the kidney. Biochem Biophys Res Commun 316(2):490–500. doi: 10.1016/j.bbrc.2004.02.075 PubMedCrossRefGoogle Scholar
  203. Yang J, Mowry LE, Nejak-Bowen KN, Okabe H, Diegel CR, Lang RA, Williams BO, Monga SP (2014) β-catenin signaling in murine liver zonation and regeneration: a. Wnt-Wnt situation! Hepatology 60(3):964–976. doi: 10.1002/hep.27082 PubMedCrossRefGoogle Scholar
  204. Yee KK, Li Y, Redding KM, Iwatsuki K, Margolskee RF, Jiang P (2013) Lgr5-EGFP marks taste bud stem/progenitor cells in posterior tongue. Stem Cells 31(5):992–1000. doi: 10.1002/stem.1338 PubMedPubMedCentralCrossRefGoogle Scholar
  205. Yokoyama H, Ogino H, Stoick-Cooper CL, Grainger RM, Moon RT (2007) Wnt/beta-catenin signaling has an essential role in the initiation of limb regeneration. Dev Biol 306(1):170–178. doi: 10.1016/j.ydbio.2007.03.014 PubMedPubMedCentralCrossRefGoogle Scholar
  206. Zecca M, Basler K, Struhl G (1996) Direct and long-range action of a wingless morphogen gradient. Cell 87(5):833–844PubMedCrossRefGoogle Scholar
  207. Zeng YA, Nusse R (2010) Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. Cell Stem Cell 6(6):568–577. doi: 10.1016/j.stem.2010.03.020 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Centre for Stem Cells and Regenerative MedicineKing’s CollegeLondonUK

Personalised recommendations