Neuroimaging in Chronic Pain, Fibromyalgia, and Somatization

  • Nicolás Fayed MiguelEmail author
  • Javier Garcia-Campayo
  • Eduardo González-Toledo
  • Laura Viguera


Neuroimaging research in psychiatry has been increasing exponentially in recent years, yet many psychiatrists are relatively unfamiliar with this field. The neuroimaging findings summarized here include alterations related to fibromyalgia, chronic pain, and coping in somatoform pain disorders. Magnetic resonance imaging is the imaging method of choice for standard clinical sequences. Improvements in imaging technology now allow advanced sequences, once used exclusively for research, to be used clinically. Magnetic resonance spectroscopy (showing metabolism) offers invaluable information on living tissues, with a special contribution to the diagnosis and prognosis of diseases of the central nervous system. Voxel-based morphometry (structural information) is a recent technique that can simultaneously visualize group differences or statistical effects on gray and white matter throughout the brain. Perfusion (marker of vascularity) offers higher spatial resolution than radionuclide techniques such as positron emission tomography and single-photon emission computed tomography. Diffusion-weighted imaging (a marker of cellularity) detects subtle degradation of white matter microstructure in fibromyalgia. Diffusion tensor imaging shows integrity of surrounding white matter tracts. Functional magnetic resonance imaging is used to identify eloquent cortex.

These techniques, all of which have advanced our understanding of chronic pain and can be used to improve knowledge on the etiology of these illnesses, will be discussed.


Chronic pain Fibromyalgia Somatization Magnetic resonance imaging Magnetic resonance spectroscopy Structural brain imaging Perfusion Diffusion weighted imaging Diffusion tensor imaging Functional magnetic resonance imaging Treatment effects 


  1. 1.
    Sjøgren P, Ekholm O, Peuckmann V, Grønbaek M. Epidemiology of chronic pain in Denmark: an update. Eur J Pain. 2009;13:287–92.PubMedCrossRefGoogle Scholar
  2. 2.
    Blyth FM, March LM, Brnabic AJ, Jorm LR, Williamson M, Cousins MJ. Chronic pain in Australia: a prevalence study. Pain. 2001;89:127–34.PubMedCrossRefGoogle Scholar
  3. 3.
    Manchikanti L, Boswell MV, Singh V, Derby R, Fellows B, Falco FJ, Datta S, Smith HS, Hirsch JA. Comprehensive review of neurophysiologic basis and diagnostic interventions in managing chronic spinal pain. Pain Physician. 2009;12:E71–120.PubMedGoogle Scholar
  4. 4.
    International Association for the Study of Pain (IASP). Classification of chronic pain. 2nd ed. IASP Task Force on Taxonomy, Merskey H, Bogduk N, editors. Seattle: IASP Press; 1994.Google Scholar
  5. 5.
    Wolfe F, Smythe HA, Yunus MB, Bennet RM, Bombardier C, Goldenberg ADL. American College of Rheumatology 1990. Criteria for the classification of fibromyalgia. Report of the Multicenter Criteria Committee. Arthritis Rheum. 1990;33:160–72.PubMedCrossRefGoogle Scholar
  6. 6.
    Wolfe F, Clauw DJ, Fitzcharles MA, Goldenberg DL, Katz RS, Mease P, Russell AS, Russell IJ, Winfield JB, Yunus MB. The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity. Arthritis Care Res. 2010;62:600–10.CrossRefGoogle Scholar
  7. 7.
    Branco JC, Bannwarth B, Failde I, Abello Carbonell J, Blotman F, Spaeth M, Saraiva F, Nacci F, Thomas E, Caubère JP, Le Lay K, Taieb C, Matucci-Cerinic M. Prevalence of fibromyalgia: a survey in five European countries. Semin Arthritis Rheum. 2010;39:448–53.PubMedCrossRefGoogle Scholar
  8. 8.
    Gamero Ruiz F, Gabriel Sánchez R, Carbonell Abelló J, Tornero Molina J, Sanchez-Magro I. Pain in Spanish rheumatology outpatient offices: EPIDOR epidemiological study. Rev Clin Esp. 2005;205:157–63.PubMedCrossRefGoogle Scholar
  9. 9.
    Treede RD, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, Hansson P, Hughes R, Nurmikko T, Serra J. Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology. 2008;70:1630–5.PubMedCrossRefGoogle Scholar
  10. 10.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders DSM-IV-TR. 4th (text revision) ed. Washington, DC: American Psychiatric Association; 2000.Google Scholar
  11. 11.
    Fayed N, Andres E, Rojas G, Moreno S, Serrano-Blanco A, Roca M, Garcia-Campayo J. Brain dysfunction in fibromyalgia and somatization disorder using proton magnetic resonance spectroscopy: a controlled study. Acta Psychiatr Scand. 2012;126:115–25.PubMedCrossRefGoogle Scholar
  12. 12.
    Cook DB, Lange G, Ciccone DS, Liu WC, Steffener J, Natelson BH. Functional imaging of pain in patients with primary Fibromyalgia. J Rheumatol. 2004;31:364–78.PubMedGoogle Scholar
  13. 13.
    Jensen KB, Kosek E, Petzke F, Carville S, Fransson P, Marcus H, Williams SC, Choy E, Giesecke T, Mainguy Y, Gracely R, Ingvar M. Evidence of dysfunctional pain inhibition in Fibromyalgia reflected in rACC during provoked pain. Pain. 2009;144:95–100.PubMedCrossRefGoogle Scholar
  14. 14.
    Foerster BR, Petrou M, Edden RAE, Clauw DJ, Sundgren PC, Schmidt-Wilcke T, Lowe SE, Harte SE, Clauw DJ, Harris RE. Reduced insular gamma-aminobutyric acid in fibromyalgia. Arthritis Rheum. 2012;64:579–83.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Ashburner J. Computational Neuroanatomy. PhD thesis, London: University College; 2000.Google Scholar
  16. 16.
    Barker PB. N-acetyl aspartate – a neuronal marker? Ann Neurol. 2001;49:423–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AM. N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol. 2007;81:89–131.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Urenjak J, Williams SR, Gadian DG. Specific expression of N-acetylaspartate in neurons, oligodendrocyte-type-2 astrocyte progenitors, and immature oligodendrocytes in vitro. J Neurochem. 1992;59:55–61.PubMedCrossRefGoogle Scholar
  19. 19.
    Baslow MH. The vertebrate brain, evidence of its modular organization and operating system: insights in to the brain's basic units of structure, function, and operation and how they influence neuronal signaling and behavior. Front Behav Neurosci. 2011;5:5.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Sartorius A, Lugenbiel P, Mahlstedt MM. Proton magnetic resonance spectroscopic creatine correlates with creatine transporter protein density in rat brain. J Neurosci Methods. 2008;172:215–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Gill SS, Small RK, Thomas DG, Patel P, Porteous R, Van Bruggen N, Gadian DG, Kauppinen RA, Williams SR. Brain metabolites as 1H NMR markers of neuronal and glial disorders. NMR Biomed. 1989;2:196–200.PubMedCrossRefGoogle Scholar
  22. 22.
    Katz-Brull R, Koudinov AR, Degani H. Choline in the aging brain. Brain Res. 2002;951:158–65.PubMedCrossRefGoogle Scholar
  23. 23.
    Escartin C, Valette J, Lebon V, Bonvento G. Neuron–astrocyte interactions in the regulation of brain energy metabolism: a focus on NMR spectroscopy. J Neurochem. 2006;99:393–401.PubMedCrossRefGoogle Scholar
  24. 24.
    Grachev ID, Fredrickson BE, Apkarian AV. Abnormal brain chemistry in chronic back pain: an in vivo proton magnetic resonance spectroscopy study. Pain. 2000;89:7e18.CrossRefGoogle Scholar
  25. 25.
    Gustin SM, Peck CC, Wilcox SL, Nash PG, Murray GM, Henderson LA. Different pain, different brain: thalamic anatomy in neuropathic and non-neuropathic chronic pain syndromes. J Neurosci. 2011;31:5956–64.PubMedCrossRefGoogle Scholar
  26. 26.
    Fukui S, Matsuno M, Inubushi T, Nosaka S. N-Acetylaspartate concentrations in the thalami of neuropathic pain patients and healthy comparison subjects measured with (1) H-MRS. Magn Reson Imaging. 2006;24:75–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Emad Y, Ragab Y, Zeinhom F, El-Khouly G, Abou-Zeid A, Rasker JJ. Hippocampus dysfunction may explain symptoms of fibromyalgia syndrome. A study with single-voxel magnetic resonance spectroscopy. J Rheumatol. 2008;35:1371–7.PubMedGoogle Scholar
  28. 28.
    Wood PB, Glabus MF, Simpson R, Patterson JC. Changes in gray matter density in fibromyalgia: correlation with dopamine metabolism. J Pain. 2009;10:609–18.PubMedCrossRefGoogle Scholar
  29. 29.
    Fayed N, Garcia-Campayo J, Magallón R, Andrés-Bergareche H, Luciano JV, Andres E, Beltrán J. Localized 1H-NMR spectroscopy in patients with fibromyalgia: a controlled study of changes in cerebral glutamate/glutamine, inositol, choline, and N-acetylaspartate. Arthritis Res Ther. 2010;12:R134.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Grachev ID, Thomas PS, Ramachandran TS. Decreased levels of N-acetylaspartate in dorsolateral prefrontal cortex in a case of intractable severe sympathetically mediated chronic pain (complex regional pain syndrome, type I). Brain Cogn. 2002;49:102–13.PubMedCrossRefGoogle Scholar
  31. 31.
    Pattany PM, Yezierski RP, Widerström-Noga EG, Bowen BC, Martinez-Arizala A, Garcia BR, Quencer RM. Proton magnetic resonance spectroscopy of the thalamus in patients with chronic neuropathic pain after spinal cord injury. AJNR Am J Neuroradiol. 2002;23:901–5.PubMedGoogle Scholar
  32. 32.
    Mckenna JE, Melzack R. Blocking NMDA receptors in the hippocampal dentate gyrus with AP5 produces analgesia in the formalin pain test. Exp Neurol. 2001;172:92–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Gracely RH, Petzke F, Wolf JM, Clauw DJ. Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum. 2002;46:1333–43.PubMedCrossRefGoogle Scholar
  34. 34.
    Valdés M, Collado A, Bargalló N, Vázquez M, Rami L, Gómez E, Salamero M. Increased glutamate⁄glutamine compounds in the brains of patients with fibromyalgia: a magnetic resonance spectroscopy study. Arthritis Rheum. 2010;62:1829–36.PubMedCrossRefGoogle Scholar
  35. 35.
    Harris RE, Sundgren PC, Craig AD, Kirshenbaum E, Sen A, Napadow V, Clauw DJ. Elevated insular glutamate in fibromyalgia is associated with experimental pain. Arthritis Rheum. 2009;60:3146–52.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Petrou M, Harris RE, Foerster BR, McLean SA, Sen A, Clauw DJ, Sundgren PC. Proton MR spectroscopy in the evaluation of cerebral metabolism in patients with fibromyalgia: comparison with healthy controls and correlation with symptom severity. Am J Neuroradiol. 2008;29:913–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Feraco P, Bacci A, Pedrabissi F, Passamonti L, Zampogna G, Malavolta N, Leonardi M. Metabolic abnormalities in pain-processing regions of patients with fibromyalgia: a 3 T MR spectroscopy study. Am J Neuroradiol. 2011;32:1585–90.PubMedCrossRefGoogle Scholar
  38. 38.
    Kapogiannis D, Reiter DA, Willette AA, Mattson MP. Posteromedial cortex glutamate and GABA predict intrinsic functional connectivity of the default mode network. Neuroimage. 2013;64:112–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Napadow V, Harris RE. What has functional connectivity and chemical neuroimaging in fibromyalgia taught us about the mechanisms and management of ‘centralized’ pain? Arthritis Res Ther. 2014;16:425.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Gustin SM, Wrigley PJ, Youssef AM, McIndoe L, Wilcox SL, Rae CD, Edden RA, Siddall PJ, Henderson LA. Thalamic activity and biochemical changes in individuals with neuropathic pain after spinal cord injury. Pain. 2014;155:1027–36.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Wang Y, Li D, Bao F, Ma S, Guo C, Jin C, Zhang M. Thalamic metabolic alterations with cognitive dysfunction in idiopathic trigeminal neuralgia: a multivoxel spectroscopy study. Neuroradiology. 2014;56:685–93.PubMedCrossRefGoogle Scholar
  42. 42.
    Chang L, Munsaka SM, Kraft-Terry S, Ernst T. Magnetic resonance spectroscopy to assess neuroinflammation and neuropathic pain. J Neuroimmune Pharmacol. 2013;8:576–93.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    González de la Aleja J, Ramos A, Mato-Abad V, Martínez-Salio A, Hernández-Tamames JA, Molina JA, Hernández-Gallego J, Alvarez-Linera J. Higher glutamate to glutamine ratios in occipital regions in women with migraine during the interictal state. Headache. 2013;53:365–75.PubMedCrossRefGoogle Scholar
  44. 44.
    Siniatchkin M, Sendacki M, Moeller F, Wolff S, Jansen O, Siebner H, Stephani U. Abnormal changes of synaptic excitability in migraine with aura. Cereb Cortex. 2012;22:2207–16.PubMedCrossRefGoogle Scholar
  45. 45.
    Reyngoudt H, Achten E, Paemeleire K. Magnetic resonance spectroscopy in migraine: what have we learned so far? Cephalalgia. 2012;32:845–59.PubMedCrossRefGoogle Scholar
  46. 46.
    Cacace AT, Silver SM. Applications of magnetic resonance spectroscopy to tinnitus research: initial data, current issues, and future perspectives. Prog Brain Res. 2007;166:71–81.PubMedCrossRefGoogle Scholar
  47. 47.
    Gutzeit A, Meier D, Froehlich JM, Hergan K, Kos S, V Weymarn C, Lutz K, Ettlin D, Binkert CA, Mutschler J, Sartoretti-Schefer S, Brügger M. Differential NMR spectroscopy reactions of anterior/posterior and right/left insular subdivisions due to acute dental pain. Eur Radiol. 2013;23:450–60.PubMedCrossRefGoogle Scholar
  48. 48.
    Bleich S, Römer K, Wiltfang J, Kornhuber J. Glutamate and the glutamate receptor system: a target for drug action. Int J Geriatr Psychiatry. 2003;18:S33–40.PubMedCrossRefGoogle Scholar
  49. 49.
    Lorio S, Lutti A, Kherif F, Ruef A, Dukart J, Chowdhury R, Frackowiak RS, Ashburner J, Helms G, Weiskopf N, Draganski B. Disentangling in vivo the effects of iron content and atrophy on the ageing human brain. Neuroimage. 2014;103:280–9.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Schmidt-Wilcke T. Variations in brain volume and regional morphology associated with chronic pain. Curr Rheumatol Rep. 2008;10:467–74.PubMedCrossRefGoogle Scholar
  51. 51.
    Wood PB. Variations in brain gray matter associated with chronic pain. Curr Rheumatol Rep. 2010;12:462–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Cagnie B, Coppieters I, Denecker S, Six J, Danneels L, Meeus M. Central sensitization in fibromyalgia? A systematic review on structural and functional brain MRI. Semin Arthritis Rheum. 2014;44:68–75.PubMedCrossRefGoogle Scholar
  53. 53.
    Valet M, Gündel H, Sprenger T, Sorg C, Mühlau M, Zimmer C, Henningsen P, Tölle TR. Patients with pain disorder show gray-matter loss in pain-processing structures: a voxel-based morphometric study. Psychosom Med. 2009;71:49–56.PubMedCrossRefGoogle Scholar
  54. 54.
    Burgmer M, Pogatzki-Zahn E, Gaubitz M, Wessoleck E, Heuft G, Pfleiderer B. Altered brain activity during pain processing in fibromyalgia. Neuroimage. 2009;44:502–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Lutz J, Jäger L, de Quervain D, Krauseneck T, Padberg F, Wichnalek M, Beyer A, Stahl R, Zirngibl B, Morhard D, Reiser M, Schelling G. White and gray matter abnormalities in the brain of patients with fibromyalgia: a diffusion-tensor and volumetric imaging study. Arthritis Rheum. 2008;58:3960–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Kuchinad A, Schweinhardt P, Seminowicz DA, Wood PB, Chizh BA, Bushnell MC. Accelerated brain gray matter loss in fibromyalgia patients: premature aging of the brain? J Neurosci. 2007;27:4004–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Villarreal G, Hamilton DA, Petropoulos H, Driscoll I, Rowland LM, Griego JA, Kodituwakku PW, Hart BL, Escalona R, Brooks WM. Reduced hippocampal volume and total white matter volume in posttraumatic stress disorder. Biol Psychiatry. 2002;52:119–25.PubMedCrossRefGoogle Scholar
  58. 58.
    Chen S, Xia W, Li L, Liu J, He Z, Zhang Z, Yan L, Zhang J, Hu D. Gray matter density reduction in the insula in fire survivors with posttraumatic stress disorder: a voxel-based morphometric study. Psychiatry Res. 2006;146:65–72.PubMedCrossRefGoogle Scholar
  59. 59.
    Apkarian AV, Sosa Y, Sonty S, Levy RM, Harden RN, Parrish TB, Gitelman DR. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci. 2004;24:10410–5.PubMedCrossRefGoogle Scholar
  60. 60.
    Okada T, Tanaka M, Kuratsune H, Watanabe Y, Sadato N. Mechanisms underlying fatigue: a voxel-based morphometric study of chronic fatigue syndrome. BMC Neurol. 2004;4:14.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    de Lange FP, Kalkman JS, Bleijenberg G, Hagoort P, van der Meer JW, Toni I. Gray matter volume reduction in the chronic fatigue syndrome. Neuroimage. 2005;26:777–81.PubMedCrossRefGoogle Scholar
  62. 62.
    Schmidt-Wilcke T, Luerding R, Weigand T, Jürgens T, Schuierer G, Leinisch E, Bogdahn U. Striatal grey matter increase in patients suffering from fibromyalgia. A voxel-based morphometry study. J Pain. 2007;132:S109–16.CrossRefGoogle Scholar
  63. 63.
    Obermann M, Rodriguez-Raecke R, Naegel S, Holle D, Mueller D, Yoon MS, Theysohn N, Blex S, Diener HC, Katsarava Z. Gray matter volume reduction reflects chronic pain in trigeminal neuralgia. Neuroimage. 2013;74:352–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Henderson LA, Peck CC, Petersen ET, Rae CD, Youssef AM, Reeves JM, Wilcox SL, Akhter R, Murray GM, Gustin SM. Chronic pain: lost inhibition? J Neurosci. 2013;33:7574–82.PubMedCrossRefGoogle Scholar
  65. 65.
    Schmidt-Wilcke T, Hierlmeier S, Leinisch E. Altered regional brain morphology in patients with chronic facial pain. Headache. 2010;50:1278–85.PubMedCrossRefGoogle Scholar
  66. 66.
    Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 2005;9:463–84.PubMedCrossRefGoogle Scholar
  67. 67.
    Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S. The role of the medial frontal cortex in cognitive control. Science. 2004;306:443–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Apkarian AV, Baliki MN, Geha PY. Towards a theory of chronic pain. Prog Neurobiol. 2009;87:81–97.PubMedCrossRefGoogle Scholar
  69. 69.
    Robinson ME, Craggs JG, Price DD, Perlstein WM, Staud R. Gray matter volumes of pain related brain areas are decreased in fibromyalgia syndrome. Gray matter volumes of pain related brain areas are decreased in fibromyalgia syndrome. J Pain. 2011;12:436–43.PubMedCrossRefGoogle Scholar
  70. 70.
    Baliki MN, Geha PY, Apkarian AV. Parsing pain perception between nociceptive representation and magnitude estimation. J Neurophysiol. 2009;101:875–87.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Garcia-Campayo J, Sanz C, Baringo T, Ceballos C. SPECT scan in somatisation disorder patients: an exploratory study of eleven cases. Aust N Z J Psychiatry. 2001;35:359–63.PubMedCrossRefGoogle Scholar
  72. 72.
    Chen JJ, Wang JY, Chang YM. Regional cerebral blood flow between primary and concomitant fibromyalgia patients: a possible way to differentiate concomitant fibromyalgia from the primary disease. Scand J Rheumatol. 2007;36:22.CrossRefGoogle Scholar
  73. 73.
    Fields RD. White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 2008;31:317–76.CrossRefGoogle Scholar
  74. 74.
    Sundgren PC, Dong Q, Gómez-Hassan D, Mukherji SK, Maly P, Welsh R. Diffusion tensor imaging of the brain: review of clinical applications. Neuroradiology. 2004;46:339–50.PubMedCrossRefGoogle Scholar
  75. 75.
    Hadjipavlou G, Dunckley P, Behrens TE, Tracey I. Determining anatomical connectivities between cortical and brainstem pain processing regions in humans: a diffusion tensor imaging study in healthy controls. Pain. 2006;123:169–78.PubMedCrossRefGoogle Scholar
  76. 76.
    Sundgren PC, Petrou M, Harris RE. Diffusion-weighted and diffusion tensor imaging in fibromyalgia patients: a prospective study of whole brain diffusivity, apparent diffusion coefficient, and fraction anisotropy in different regions of the brain and correlation with symptom severity. Acad Radiol. 2007;14:839–46.PubMedCrossRefGoogle Scholar
  77. 77.
    Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38.PubMedCrossRefGoogle Scholar
  78. 78.
    Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34:537–41.PubMedCrossRefGoogle Scholar
  79. 79.
    Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci. 2005;360:1001–13.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Napadow V, LaCount L, Park K, As-Sanie S, Clauw DJ, Harris RE. Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum. 2010;62:2545–55.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Seminowicz DA, Davis KD. Interactions of pain intensity and cognitive load: the brain stays on task. Cereb Cortex. 2007;17:1412–22.PubMedCrossRefGoogle Scholar
  82. 82.
    Baliki M, Geha P, Apkarian A, Chialvo D. Impaired brain de-activation in chronic pain. In: Society for Neuroscience Annual Meeting. San Diego: Society for Neuroscience. 2007;825-822/II819.Google Scholar
  83. 83.
    Pujol J, Macia D, Garcia-Fontanals A, Blanco-Hinojo L, Lopez-Sola M, Garcia-Blanco S, Poca-Dias V, Harrison BJ, Contreras-Rodriguez O, Monfort J, Garcia-Fructuoso F, Deus J. The contribution of sensory system functional connectivity reduction to clinical pain in fibromyalgia. Pain. 2014;155:1492–503.PubMedCrossRefGoogle Scholar
  84. 84.
    Cifre I, Sitges C, Fraiman D, Munoz MA, Balenzuela P, Gonzalez-Roldan A, Martinez-Jauand M, Birbaumer N, Chialvo DR, Montoya P. Disrupted functional connectivity of the pain network in fibromyalgia. Psychosom Med. 2012;74:55–62.PubMedCrossRefGoogle Scholar
  85. 85.
    Ceko M, Bushnell MC, Fitzcharles MA, Schweinhardt P. Fibromyalgia interacts with age to change the brain. Neuroimage Clin. 2013;3:249–60.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Kim JY, Kim SH, Seo J, Kim SH, Han SW, Nam EJ, Kim SK, Lee HJ, Lee SJ, Kim YT, Chang Y. Increased power spectral density in resting-state pain-related brain networks in fibromyalgia. Pain. 2013;154:1792–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Seminowicz DA, Davis KD. Cortical responses to pain in healthy individuals depends on pain catastrophizing. Pain. 2006;120:297–306.PubMedCrossRefGoogle Scholar
  88. 88.
    Stoeter P, Bauermann T, Nickel R, Corluka L, Gawehn J, Vucurevic G, Vossel G, Egle UT. Cerebral activation in patients with somatoform pain disorder exposed to pain and stress: an fMRI study. Neuroimage. 2007;36:418–30.PubMedCrossRefGoogle Scholar
  89. 89.
    Gundel H, Valet M, Sorg C, Huber D, Zimmer C, Sprenger T, Tölle TR. Altered cerebral response to noxious heat stimulation in patients with somatoform pain disorder. Pain. 2008;137:413–21.PubMedCrossRefGoogle Scholar
  90. 90.
    Petzke F, Clauw DJ, Ambrose K, Khine A, Gracely RH. Increased pain sensitivity in fibromyalgia: effects of stimulus type and mode of presentation. Pain. 2003;105:403–13.PubMedCrossRefGoogle Scholar
  91. 91.
    Lui F, Duzzi D, Corradini M, Serafini M, Baraldi P, Porro CA. Touch or pain? Spatiotemporal patterns of cortical fMRI activity following brief mechanical stimuli. Pain. 2008;138:362–74.PubMedCrossRefGoogle Scholar
  92. 92.
    Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98:676–82.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Jorge LL, Amaro Jr E. Brain imaging in fibromyalgia. Curr Pain Headache Rep. 2012;16:388–98.PubMedCrossRefGoogle Scholar
  94. 94.
    Sheline YI, Barch DM, Price JL, Rundle MM, Vaishnavi SN, Snyder AZ, Mintun MA, Wang S, Coalson RS, Raichle ME. The default mode network and self-referential processes in depression. Proc Natl Acad Sci U S A. 2009;106:1942–7.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    O’Doneel LJ, Schultz T. Statistical and machine learning methods for neuroimaging: examples, challenges, and extensions to diffusion imaging data. In: Hotz I, Schultz T, editors. Visualization and processing of higher order descriptors for multi-valued data, mathematics and visualization. Cham: Springer; 2015.Google Scholar
  96. 96.
    Liu J, Zhao L, Lei F, Zhang Y, Yuan K, Gong Q, Liang F, Tian J. Disrupted resting-state functional connectivity and its changing trend in migraine suffers. Hum Brain Mapp. 2015;36:1892–907.PubMedCrossRefGoogle Scholar
  97. 97.
    Baer RA. Mindfulness training as a clinical intervention: a conceptual and empirical review. Clin Psychol Sci Pract. 2003;10:125–43.CrossRefGoogle Scholar
  98. 98.
    Grossman P, Niemann L, Schmidt S, Walach H. Mindfulness-based stress reduction and health benefits. A meta-analysis. J Psychosom Res. 2004;57:35–43.PubMedCrossRefGoogle Scholar
  99. 99.
    Lauche R, Langhorst J, Paul A, Dobos G, Cramer H. Self-reported health and satisfaction of patients with chronic diseases who meditate: a case–control study. Qual Life Res. 2014;23:2639–44.PubMedCrossRefGoogle Scholar
  100. 100.
    Lauche R, Cramer H, Häuser W. A systematic overview of reviews for complementary and alternative therapies in the treatment of the fibromyalgia syndrome. Evid Based Complement Alternat Med. 2015;1–13.Google Scholar
  101. 101.
    Hölzel BK, Ott U, Hempel H, Hackl A, Wolf K, Stark R, Vaitl D. Differential engagement of anterior cingulate and adjacent medial frontal cortex in adept meditators and non-meditators. Neurosci Lett. 2007;421:16–21.PubMedCrossRefGoogle Scholar
  102. 102.
    Fox KC, Nijeboer S, Dixon ML, Floman JL, Ellamil M, Rumak SP, Sedlmeier P, Christoff K. Is meditation associated with altered brain structure? A systematic review and meta-analysis of morphometric neuroimaging in meditation practitioners. Neurosci Biobehav Rev. 2014;43C:48–73.CrossRefGoogle Scholar
  103. 103.
    Fayed N, Lopez del Hoyo Y, Andres E, Serrano-Blanco A, Bellón J, Aguilar K, Cebolla A, Garcia-Campayo J. Brain changes in long-term Zen meditators using proton magnetic resonance spectroscopy and diffusion tensor imaging: a controlled study. PLoS One. 2013;8:e58476.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Kang D, Jo HJ, Jung WH, Kim SH, Jung YH, Choi CH, Lee US, An SC, Jang JH, Kwon JS. The effect of meditation on brain structure: cortical thickness mapping and diffusion tensor imaging. Soc Cogn Affect Neurosci. 2013;8:27–33.PubMedCrossRefGoogle Scholar
  105. 105.
    Tang YY, Lu Q, Fan M, Yang Y, Posner MI. Mechanisms of white matter changes induced by meditation. Proc Natl Acad Sci. 2012;109:10570–4.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Brewer JA, Worhunsky PD, Gray JR, Tang YY, Weber J, Kober H. Meditation experience is associated with differences in default mode network activity and connectivity. Proc Natl Acad Sci. 2011;108:20254–9.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Hasenkamp W, Barsalou LW. Effects of meditation experience on functional connectivity of distributed brain networks. Front Hum Neurosci. 2012;6:38.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Jang JH, Jung WH, Kang DH, Byun MS, Kwon SJ, Choi CH, Kwon JS. Increased default mode network connectivity associated with meditation. Neurosci Lett. 2011;487:358–62.PubMedCrossRefGoogle Scholar
  109. 109.
    Taylor VA, Daneault V, Grant J, Scavone G, Breton E, Roffe-Vidal S, Lavarenne AS, Marrelec G, Benali H, Beauregard M. Impact of meditation training on the default mode network during a restful state. Soc Cogn Affect Neurosci. 2013;8:4–14.PubMedCrossRefGoogle Scholar
  110. 110.
    Lutz A, Brefczynski-Lewis J, Johnstone T, Davidson RJ. Regulation of the neural circuitry of emotion by compassion meditation: effects of meditative expertise. PLoS One. 2008;26:e1897.CrossRefGoogle Scholar
  111. 111.
    Khoury B, Lecomte T, Fortin G, Masse M, Therien P, Bouchard V, Hofmann SG. Mindfulness-based therapy: a comprehensive meta-analysis. Clin Psychol Rev. 2013;33:763–71.PubMedCrossRefGoogle Scholar
  112. 112.
    Grant JA, Courtemanche J, Rainville P. A non-elaborative mental stance and decoupling of executive and pain-related cortices predicts low pain sensitivity in Zen meditators. Pain. 2011;152:150–6.PubMedCrossRefGoogle Scholar
  113. 113.
    Hölzel BK, Lazar SW, Gard T, Schuman-Olivier Z, Vago DR, Ott U. How does mindfulness meditation work? Proposing mechanisms of action from a conceptual and neural perspective. Perpsect Psychol Sci. 2011;6:537–59.CrossRefGoogle Scholar
  114. 114.
    Price DD. Psychological and neural mechanisms of the affective dimension of pain. Science (New York, NY). 2000;288:1769–72.CrossRefGoogle Scholar
  115. 115.
    Creswell JD, Way BM, Eisenberger NI, Lieberman MD. Neural correlates of dispositional mindfulness during affect labeling. Psychosom Med. 2007;69:560–5.PubMedCrossRefGoogle Scholar
  116. 116.
    Harris RE, Clauw DJ, Scott DJ, McLean SA, Gracely RH, Zubieta JK. Decreased central mu-opioid receptor availability in fibromyalgia. J Neurosci. 2007;27:10000e6.Google Scholar
  117. 117.
    Arienzo D, Babiloni C, Ferretti A, Caulo M, Del Gratta C, Tartaro A, Rossini PM, Romani GL. Somatotopy of anterior cingulate cortex (ACC) and supplementary motor area (SMA) for electric stimulation of the median and tibial nerves: an fMRI study. Neuroimage. 2006;33:700–5.PubMedCrossRefGoogle Scholar
  118. 118.
    Goldin PR, Gross JJ. Effects of mindfulness-based stress reduction (MBSR) on emotion regulation in social anxiety disorder. Emotion. 2010;10:83–91.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Napadow V, Kim J, Clauw DJ, Harris RE. Decreased intrinsic brain connectivity is associated with reduced clinical pain in fibromyalgia. Arthritis Rheum. 2012;64:2398–403.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Harris RE, Napadow V, Huggins JP, Pauer L, Kim J, Hampson J, Sundgren PC, Foerster B, Petrou M, Schmidt-Wilcke T, Clauw DJ. Pregabalin rectifies aberrant brain chemistry, connectivity, and functional response in chronic pain patients. Anesthesiology. 2013;119:1453–64.PubMedCrossRefGoogle Scholar
  121. 121.
    Schmidt-Wilcke T, Ichesco E, Hampson JP, Kairys A, Peltier S, Harte S, Clauw DJ, Harris RE. Resting state connectivity correlates with drug and placebo response in fibromyalgia patients. Neuroimage Clin. 2014;6:252–61.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Hashmi JA, Baria AT, Baliki MN, Huang L, Schnitzer TJ, Apkarian AV. Brain networks predicting placebo analgesia in a clinical trial for chronic back pain. Pain. 2012;153:2393–402.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Sevel LS, O'Shea AM, Letzen JE, Craggs JG, Price DD, Robinson ME. Effective connectivity predicts future placebo analgesic response: a dynamic causal modeling study of pain processing in healthy controls. Neuroimage. 2015;110:87–94.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Olivan-Blázquez B, Herrera-Mercadal P, Puebla-Guedea M, Pérez-Yus MC, Andrés E, Fayed N, López-Del-Hoyo Y, Magallon R, Roca M, Garcia-Campayo J. Efficacy of memantine in the treatment of fibromyalgia: a double-blind, randomised, controlled trial with 6-month follow-up. Pain. 2014;155:2517–25.PubMedCrossRefGoogle Scholar
  125. 125.
    Fayed N, Olivan-Blázquez B, Herrera-Mercadal P, Puebla-Guedea M, Pérez-Yus MC, Andrés E, López del Hoyo Y, Magallon R, Viguera L, Garcia-Campayo J. Changes in metabolites after treatment with memantine in fibromyalgia. A double-blind randomized controlled trial with magnetic resonance spectroscopy with a 6-month follow-up. CNS Neurosci Ther. 2014;20:999–1007.PubMedCrossRefGoogle Scholar
  126. 126.
    O'Muircheartaigh J, Marquand A, Hodkinson DJ, Krause K, Khawaja N, Renton TF, Huggins JP, Vennart W, Williams SC, Howard MA. Multivariate decoding of cerebral blood flow measures in a clinical model of on-going postsurgical pain. Hum Brain Mapp. 2015;36:633–42.PubMedCrossRefGoogle Scholar
  127. 127.
    Baliki MN, Petre B, Torbey S, Herrmann KM, Huang L, Schnitzer TJ, Fields HL, Apkarian AV. Corticostriatal functional connectivity predicts transition to chronic back pain. Nat Neurosci. 2012;15:1117–9.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Mansour AR, Baliki MN, Huang L, Torbey S, Herrmann KM, Schnitzer TJ, Apkarian AV. Brain white matter structural properties predict transition to chronic pain. Pain. 2013;154:2160–8.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nicolás Fayed Miguel
    • 1
    Email author
  • Javier Garcia-Campayo
    • 2
  • Eduardo González-Toledo
    • 3
  • Laura Viguera
    • 4
  1. 1.Department of NeuroradiologyQuirónsalud HospitalZaragozaSpain
  2. 2.Department of PsychiatryMiguel Servet Hospital, University of ZaragozaZaragozaSpain
  3. 3.Department of Radiology, Neurology, and AnesthesiologyLouisiana State University Health Sciences CenterShreveportUSA
  4. 4.Department of AnesthesiologyMiguel Servet HospitalZaragozaSpain

Personalised recommendations