Advertisement

Towards Context-Aware Supervision for Logistics Asset Management: Concept Design and System Implementation

  • Fan FengEmail author
  • Yusong Pang
  • Gabriel Lodewijks
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 277)

Abstract

Innovations of information and communication technology (ICT) open plenty opportunities to promote internal operation efficiency and external service level in logistics. As current logistics developments tend to be more complex in operation and large in scale, recent practices start to pay more attentions on improving asset (e.g. equipment and infrastructure) management performance with new ICT development. One of the primary concern is to improve system robustness and reliability. It not only requires the supervision system be capable of diagnosing the condition of the system, but also proficient to find the intrinsic relationship between different conditions and resources thus lead to an integrated decision making process. Moreover, recent ICT innovations, such as WSN and IOT, could record and deliver system descriptors (physical measurements, virtual resources, operational configurations) in real time. Such large-stream and heterogeneous data requires an integrated framework to process and management. To address such challenges, in this paper, a novel concept of context-aware supervision is proposed. An intelligent system with integration of semantic web and agent technology is developed, which aims at providing condition-monitoring and maintenance decisions to relevant user. A generic ontology-agent based framework will be illustrated. The developed system will be applied for the supervision of a large-scale material handling system-belt conveying system as a proof-of-concept.

Keywords

Logistics asset management Context-awareness Ontology-agent integration System supervision 

Notes

Acknowledgement

This research is supported by the China Scholarship Council under Grant 201307720072.

References

  1. 1.
    Neng Chiu, H.: The integrated logistics management system: a framework and case study. Int. J. Phys. Distrib. Logistics Manage. 25(6), 4–22 (1995)CrossRefGoogle Scholar
  2. 2.
    Gunasekaran, A., Ngai, E.W., Cheng, T.E.: Developing an e-logistics system: a case study. Int. J. Logistics 10(4), 333–349 (2007)CrossRefGoogle Scholar
  3. 3.
    De La Cruz, A.L., Veeke, H.P.M., Lodewijks, G.: Prognostics in the control of logistics systems. In: Proceedings of IEEE International Conference on Service Operations and Logistics, and Informatics, pp. 1–5 (2006)Google Scholar
  4. 4.
    Takata, S., Kirnura, F., Van Houten, F.J.A.M., Westkamper, E., Shpitalni, M., Ceglarek, D., Lee, J.: Maintenance: changing role in life cycle management. CIRP Ann. Manuf. Technol. 53(2), 643–655 (2004)CrossRefGoogle Scholar
  5. 5.
    Thomas, G., Thompson, G.R., Chung, C.W., Barkmeyer, E., Carter, F., Templeton, M., Fox, S., Hartman, B.: Heterogeneous distributed database systems for production use. ACM Comput. Surv. (CSUR) 22(3), 237–266 (1990)CrossRefGoogle Scholar
  6. 6.
    Winters, L.S., Gorman, M.M., Tolk, A.: Next generation data interoperability: it’s all about the metadata. In: IEEE Fall Simulation Interoperability Workshop (2006)Google Scholar
  7. 7.
    Clark, T., Jones, R.: Organisational interoperability maturity model for C2. In: Proceedings of the 1999 Command and Control Research and Technology Symposium (1999)Google Scholar
  8. 8.
    Chioreanu, A., Brad, S., Porumb, C., Porumb, S.: E-maintenance ontology-based approach for heterogeneous distributed robotic production capabilities. Int. J. Comput. Integr. Manuf. 28(2), 200–212 (2015)CrossRefGoogle Scholar
  9. 9.
    Candell, O., Karim, R., Söderholm, P.: eMaintenance—Information logistics for maintenance support. Rob. Comput. Integr. Manuf. 25(6), 937–944 (2009)CrossRefGoogle Scholar
  10. 10.
    Arnaiz, A., Iung, B., Adgar, A., Naks, T., Tohver, A., Tommingas, T., Levrat, E.: Information and communication technologies within E-maintenance. In: E-maintenance, pp. 39–60. Springer, London (2010)Google Scholar
  11. 11.
    Pistofidis, P., Emmanouilidis, C., Papadopoulos, A., Botsaris, P.N.: Modeling the semantics of failure context as a means to offer context-adaptive maintenance support. In: Proceedings of Second European Conference of the Prognostics and Health Management Society, pp. 8–10. PHME (2014)Google Scholar
  12. 12.
    Hong, J.Y., Suh, E.H., Kim, S.J.: Context-aware systems: a literature review and classification. Expert Syst. Appl. 36(4), 8509–8522 (2009)CrossRefGoogle Scholar
  13. 13.
    Galar, D., Thaduri, A., Catelani, M., Ciani, L.: Context awareness for maintenance decision making: a diagnosis and prognosis approach. Measurement 67, 137–150 (2015)CrossRefGoogle Scholar
  14. 14.
    Evchina, Y., Puttonen, J., Dvoryanchikova, A., Lastra, J.L.M.: Context-aware knowledge-based middleware for selective information delivery in data-intensive monitoring systems. Eng. Appl. Artif. Intell. 43, 111–126 (2015)CrossRefGoogle Scholar
  15. 15.
    Pistofidis, P., Emmanouilidis, C.: Profiling context awareness in mobile and cloud based engineering asset management. In: Emmanouilidis, C., Taisch, M., Kiritsis, D. (eds.) APMS 2012. IAICT, vol. 398, pp. 17–24. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40361-3_3 CrossRefGoogle Scholar
  16. 16.
    Dey, A.K.: Understanding and using context. Pers. Ubiquit. Comput. 5(1), 4–7 (2001)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Forkan, A., Khalil, I., Tari, Z.: CoCaMAAL: A cloud-oriented context-aware middleware in ambient assisted living. Future Gener. Comput. Syst. 35, 114–127 (2014)CrossRefGoogle Scholar
  18. 18.
    Garrido, P.C., Ruiz, I.L., Gómez-Nieto, M.Á.: OBCAS: an agent-based system and ontology for mobile context aware interactions. J. Intell. Inform. Syst. 43(1), 33–57 (2014)CrossRefGoogle Scholar
  19. 19.
    El Kadiri, S., Grabot, B., Thoben, K.D., Hribernik, K., Emmanouilidis, C., von Cieminski, G., Kiritsis, D.: Current trends on ICT technologies for enterprise information systems. Comput. Ind. 79, 14–33 (2016)CrossRefGoogle Scholar
  20. 20.
    Kumar, U., Ahmadi, A., Verma, A.K., Varde, P.: Current Trends in Reliability, Availability, Maintainability and Safety: An industry Perspective. Springer, Switzerland (2015)Google Scholar
  21. 21.
    Hoareau, C., Satoh, I.: Modelling and processing information for context-aware computing: a survey. New Gener. Comput. 27(3), 177–196 (2009)CrossRefzbMATHGoogle Scholar
  22. 22.
    Krummenacher, R., Strang, T.: Ontology-based context modelling. In: Proceedings (2007)Google Scholar
  23. 23.
    Schmohl, R., Baumgarten, U.: A generalized context-aware architecture in heterogeneous mobile computing environments. In: Proceedings of the Fourth International Conference on Wireless and Mobile Communications, ICWMC 2008, pp. 118–124 (2008)Google Scholar
  24. 24.
    Staab, S., Studer, R.: Handbook on Ontologies. Springer Science & Business Media (2013)Google Scholar
  25. 25.
    Kim, K., Kim, H., Kim, S.K., Jung, J.Y.: i-RM: An intelligent risk management framework for context-aware ubiquitous cold chain logistics. Expert Syst. Appl. 46, 463–473 (2016)CrossRefGoogle Scholar
  26. 26.
    Nadoveza, D., Kiritsis, D.: Ontology-based approach for context modelling in enterprise applications. Comput. Ind. 65(9), 1218–1231 (2014)CrossRefGoogle Scholar
  27. 27.
    Natarajan, S., Srinivasan, R.: Implementation of multi agents based system for process supervision in large-scale chemical plants. Comput. Chem. Eng. 60, 182–196 (2014)CrossRefGoogle Scholar
  28. 28.
    Feng, F., Pang, Y., Lodewijks, G.: Integrate multi-agent planning in hinterland transport: design, implementation and evaluation. Adv. Eng. Inform. 29(4), 1055–1071 (2015)CrossRefGoogle Scholar
  29. 29.
    Mahdavi, I., Shirazi, B., Ghorbani, N., Sahebjamnia, N.: IMAQCS: design and implementation of an intelligent multi-agent system for monitoring and controlling quality of cement production processes. Comput. Ind. 64(3), 290–298 (2013)CrossRefGoogle Scholar
  30. 30.
    Dawson, R.J., Peppe, R., Wang, M.: An agent-based model for risk-based flood incident management. Nat. Hazards 59(1), 167–189 (2011)CrossRefGoogle Scholar
  31. 31.
    Yu, R., Iung, B., Panetto, H.: A multi-agents based E-maintenance system with case-based reasoning decision support. Eng. Appl. Artif. Intell. 16(4), 321–333 (2003)CrossRefGoogle Scholar
  32. 32.
    Natarajan, S., Ghosh, K., Srinivasan, R.: An ontology for distributed process supervision of large-scale chemical plants. Comput. Chem. Eng. 46, 124–140 (2012)CrossRefGoogle Scholar
  33. 33.
    Dibley, M., Li, H., Rezgui, Y., Miles, J.: An ontology framework for intelligent sensor-based building monitoring. Autom. Constr. 28, 1–14 (2012)CrossRefGoogle Scholar
  34. 34.
    Lodewijks, G., Ottjes, J.A.: Application of fuzzy logic in belt conveyor monitoring and control. BeltCon 13, 2–3 (2005)Google Scholar
  35. 35.
    Pang, Y., Lodewijks, G.: A remote intelligent belt conveyor inspection tool. In: Proceedings of 11th International Congress Bulk Materials Storage, Handling and Transportation. Newcastle, Australia (2013)Google Scholar
  36. 36.
    Feng, F., Pang, Y., Lodewijks, G.: An intelligent context-aware system for logistics asset supervision service. In: Proceedings of 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 1147–1152. Gdansk, Poland (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Transport Engineering and LogisticsDelft University of TechnologyDelftThe Netherlands

Personalised recommendations