Cytoskeletal Proteins in Caulobacter crescentus: Spatial Orchestrators of Cell Cycle Progression, Development, and Cell Shape

  • Kousik Sundararajan
  • Erin D. Goley
Part of the Subcellular Biochemistry book series (SCBI, volume 84)


Caulobacter crescentus, an aquatic Gram-negative α-proteobacterium, is dimorphic, as a result of asymmetric cell divisions that give rise to a free-swimming swarmer daughter cell and a stationary stalked daughter. Cell polarity of vibrioid C. crescentus cells is marked by the presence of a stalk at one end in the stationary form and a polar flagellum in the motile form. Progression through the cell cycle and execution of the associated morphogenetic events are tightly controlled through regulation of the abundance and activity of key proteins. In synergy with the regulation of protein abundance or activity, cytoskeletal elements are key contributors to cell cycle progression through spatial regulation of developmental processes. These include: polarity establishment and maintenance, DNA segregation, cytokinesis, and cell elongation. Cytoskeletal proteins in C. crescentus are additionally required to maintain its rod shape, curvature, and pole morphology. In this chapter, we explore the mechanisms through which cytoskeletal proteins in C. crescentus orchestrate developmental processes by acting as scaffolds for protein recruitment, generating force, and/or restricting or directing the motion of molecular machines. We discuss each cytoskeletal element in turn, beginning with those important for organization of molecules at the cell poles and chromosome segregation, then cytokinesis, and finally cell shape.


Chromosome Segregation Asymmetric Cell Division Division Site Peptidoglycan Synthesis Swarmer Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to members of the Goley laboratory for helpful discussions and for critical comments on this manuscript. Research in the Goley laboratory relevant to the subject of this chapter is supported by the National Institutes of Health under award number R01GM108640 (to E.D.G).


  1. Aaron M et al (2007) The tubulin homologue FtsZ contributes to cell elongation by guiding cell wall precursor synthesis in Caulobacter crescentus. Mol Microbiol 64(4):938–952PubMedCrossRefGoogle Scholar
  2. Ausmees N, Kuhn JR, Jacobs-Wagner C (2003) The bacterial cytoskeleton: an intermediate filament-like function in cell shape. Cell 115(6):705–713PubMedCrossRefGoogle Scholar
  3. Banigan EJ et al (2011) Filament depolymerization can explain chromosome pulling during bacterial mitosis. PLoS Comput Biol 7(9):e1002145PubMedPubMedCentralCrossRefGoogle Scholar
  4. Barry RM et al (2014) Large-scale filament formation inhibits the activity of CTP synthetase. eLife 3:e03638PubMedPubMedCentralGoogle Scholar
  5. Bartosik AA et al (2009) ParB deficiency in Pseudomonas aeruginosa destabilizes the partner protein ParA and affects a variety of physiological parameters. Microbiol (Reading, England) 155(Pt 4):1080–1092CrossRefGoogle Scholar
  6. Beaufay F et al (2015) A NAD-dependent glutamate dehydrogenase coordinates metabolism with cell division in Caulobacter crescentus. EMBO J 34(13):1786–1800PubMedPubMedCentralCrossRefGoogle Scholar
  7. Biteen JS et al (2008) Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP. Nat Methods 5(11):947–949PubMedPubMedCentralCrossRefGoogle Scholar
  8. Boutte CC, Henry JT, Crosson S (2012) ppGpp and polyphosphate modulate cell cycle progression in Caulobacter crescentus. J Bacteriol 194(1):28–35PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bowman GR et al (2008) A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole. Cell 134(6):945–955PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bowman GR et al (2010) CaulobacterPopZ forms a polar subdomain dictating sequential changes in pole composition and function. Mol Microbiol 76(1):173–189PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bowman GR et al (2013) Oligomerization and higher-order assembly contribute to sub-cellular localization of a bacterial scaffold. Mol Microbiol 90(4):776–795PubMedCrossRefGoogle Scholar
  12. Briegel A et al (2006) Multiple large filament bundles observed in Caulobacter crescentus by electron cryotomography. Mol Microbiol 62(1):5–14PubMedCrossRefGoogle Scholar
  13. Britos L et al (2011) Regulatory response to carbon starvation in Caulobacter crescentus. PLoS One 6(4):e18179PubMedPubMedCentralCrossRefGoogle Scholar
  14. Buske PJ, Levin PA (2013) A flexible C-terminal linker is required for proper FtsZ assembly in vitro and cytokinetic ring formation in vivo. Mol Microbiol 89(2):249–263PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cabeen MT et al (2009) Bacterial cell curvature through mechanical control of cell growth. EMBO J 28:1–12CrossRefGoogle Scholar
  16. Cabeen MT et al (2010) Mutations in the Lipopolysaccharide biosynthesis pathway interfere with crescentin-mediated cell curvature in Caulobacter crescentus. J Bacteriol 192(13):3368–3378PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cabeen MT, Herrmann H, Jacobs-Wagner C (2011) The domain organization of the bacterial intermediate filament-like protein crescentin is important for assembly and function. Cytoskeleton 68(4):205–219PubMedPubMedCentralCrossRefGoogle Scholar
  18. Carcamo WC et al (2011) Induction of cytoplasmic rods and rings structures by inhibition of the CTP and GTP synthetic pathway in mammalian cells. PLoS One 6(12):e29690PubMedPubMedCentralCrossRefGoogle Scholar
  19. Charbon G, Cabeen MT, Jacobs-Wagner C (2009) Bacterial intermediate filaments: in vivo assembly, organization, and dynamics of crescentin. Genes Dev 23(9):1131–1144PubMedPubMedCentralCrossRefGoogle Scholar
  20. Curtis PD, Brun YV (2010) Getting in the loop: regulation of development in Caulobacter crescentus. Microbiol Mol Biol Rev MMBR 74(1):13–41PubMedCrossRefGoogle Scholar
  21. Daniel RA, Errington J (2003) Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113(6):767–776PubMedCrossRefGoogle Scholar
  22. Din N, Quardokus EM, Sackett MJ (1998) Dominant C-terminal deletions of FtsZ that affect its ability to localize in Caulobacter and its interaction with FtsA. Mol Microbiol 27(5):1051–1063PubMedCrossRefGoogle Scholar
  23. Divakaruni AV et al (2007) The cell shape proteins MreB and MreC control cell morphogenesis by positioning cell wall synthetic complexes. Mol Microbiol 66(1):174–188PubMedCrossRefGoogle Scholar
  24. Donovan C et al (2010) Subcellular localization and characterization of the ParAB system from Corynebacterium glutamicum. J Bacteriol 192(13):3441–3451PubMedPubMedCentralCrossRefGoogle Scholar
  25. Duman R et al (2013) Structural and genetic analyses reveal the protein SepF as a new membrane anchor for the Z ring. Proc Natl Acad Sci 110(48):E4601–E4610PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dye NA et al (2011) Mutations in the nucleotide binding pocket of MreB can alter cell curvature and polar morphology in Caulobacter. Mol Microbiol 81(2):368–394PubMedPubMedCentralCrossRefGoogle Scholar
  27. Easter J, Gober JW (2002) ParB-stimulated nucleotide exchange regulates a switch in functionally distinct ParA activities. Mol Cell 10(2):472–434CrossRefGoogle Scholar
  28. Ebersbach G et al (2006) Regular cellular distribution of plasmids by oscillating and filament-forming ParA ATPase of plasmid pB171. Mol Microbiol 61(6):1428–1442PubMedCrossRefGoogle Scholar
  29. Ebersbach G et al (2008) A self-associating protein critical for chromosome attachment, division, and polar organization in Caulobacter. Cell 134(6):956–968PubMedPubMedCentralCrossRefGoogle Scholar
  30. England JC et al (2010) Global regulation of gene expression and cell differentiation in Caulobacter crescentus in response to nutrient availability. J Bacteriol 192(3):819–833PubMedCrossRefGoogle Scholar
  31. Erickson HP, Anderson DE, Osawa M (2010) FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol Mol Biol Rev (MMBR) 74(4):504–528CrossRefGoogle Scholar
  32. Esue O et al (2010) Dynamics of the bacterial intermediate filament crescentin in vitro and in vivo. PLoS One 5(1):e8855Google Scholar
  33. Fenton AK, Gerdes K (2013) Direct interaction of FtsZ and MreB is required for septum synthesis and cell division in Escherichia coli. EMBO J 32(13):1953–1965PubMedPubMedCentralCrossRefGoogle Scholar
  34. Figge RM, Easter J, Gober JW (2003) Productive interaction between the chromosome partitioning proteins, ParA and ParB, is required for the progression of the cell cycle in Caulobacter crescentus. Mol Microbiol 47(5):1225–1237PubMedCrossRefGoogle Scholar
  35. Figge RM, Divakaruni AV, Gober JW (2004) MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus. Mol Microbiol 51(5):1321–1332PubMedCrossRefGoogle Scholar
  36. Fogel MA, Waldor MK (2006) A dynamic, mitotic-like mechanism for bacterial chromosome segregation. Genes Dev 20(23):3269–3282PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gardner KAJA, Moore DA, Erickson HP (2013) The C-terminal linker of Escherichia coli FtsZ functions as an intrinsically disordered peptide. Mol Microbiol 89(2):264–275PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ghosal D, Trambaiolo D, Amos LA, Lowe J (2014) MinCD cell division proteins form alternating copolymeric cytomotive filaments. Nat Commun 5:5341PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gitai Z, Dye N, Shapiro L (2004) An actin-like gene can determine cell polarity in bacteria. Proc Natl Acad Sci U S A 101(23):8643–8648PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gitai Z et al (2005) MreB actin-mediated segregation of a specific region of a bacterial chromosome. Cell 120(3):329–341PubMedCrossRefGoogle Scholar
  41. Godfrin-Estevenon A-M, Pasta F, Lane D (2002) The parAB gene products of Pseudomonas putida exhibit partition activity in both P. putida and Escherichia coli. Mol Microbiol 43(1):39–49PubMedCrossRefGoogle Scholar
  42. Goley ED, Iniesta AA, Shapiro L (2007) Cell cycle regulation in Caulobacter: location, location, location. J Cell Sci 120(Pt 20):3501–3507PubMedCrossRefGoogle Scholar
  43. Goley ED et al (2010) Imaging-based identificationof a critical regulator of FtsZ protofilament curvature in Caulobacter. Mol Cell 39(6):975–987PubMedPubMedCentralCrossRefGoogle Scholar
  44. Goley ED et al (2011) Assembly of the Caulobacter cell division machine. Mol Microbiol 80(6):1680–1698PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gonzalez D, Collier J (2013) DNA methylation by CcrM activates the transcription of two genes required for the division of Caulobacter crescentus. Mol Microbiol 88(1):203–218PubMedPubMedCentralCrossRefGoogle Scholar
  46. Griffith JD, Bonner JF (1973) Chromatin-like aggregates of uranyl acetate. Nat New Biol 244:80–81PubMedCrossRefGoogle Scholar
  47. Harris LK, Dye NA, Theriot JA (2014) A Caulobacter MreB mutant with irregular cell shape exhibits compensatory widening to maintain a preferred surface area to volume ratio. Mol Microbiol 94(5):988–1005CrossRefGoogle Scholar
  48. Holden SJ et al (2014) High throughput 3D super-resolution microscopy reveals Caulobacter crescentus in vivo Z-ring organization. Proc Natl Acad Sci 111(12):4566–4571PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hottes AK, Shapiro L, McAdams HH (2005) DnaA coordinates replication initiation and cell cycle transcription in Caulobacter crescentus. Mol Microbiol 58(5):1340–1353PubMedCrossRefGoogle Scholar
  50. Howard M, Gerdes K (2010) What is the mechanism of ParA-mediated DNA movement? Mol Microbiol 78(1):9–12PubMedGoogle Scholar
  51. Hughes HV et al (2013) Co-ordinate synthesis and protein localization in a bacterial organelle by the action of a penicillin-binding-protein. Mol Microbiol 90(6):1162–1177PubMedCrossRefGoogle Scholar
  52. Ingerson-Mahar M et al (2010) The metabolic enzyme CTP synthase forms cytoskeletal filaments. Nature 12(8):739–746Google Scholar
  53. Iniesta AA (2014) ParABS system in chromosome partitioning in the bacterium Myxococcus xanthus. PLoS One 9(1):e86897PubMedPubMedCentralCrossRefGoogle Scholar
  54. Iwai N, Nagai K, Wachi M (2002) Novel S-benzylisothiourea compound that induces spherical cells in Escherichia coli probably by acting on a rod-shape-determining protein(s) other than penicillin-binding protein 2. Biosci Biotechnol Biochem 66(12):2658–2662PubMedCrossRefGoogle Scholar
  55. Jakimowicz D et al (2007) Characterization of the mycobacterial chromosome segregation protein ParB and identification of its target in Mycobacterium smegmatis. Microbiol (Reading, England) 153(Pt 12):4050–4060CrossRefGoogle Scholar
  56. Jenal U (2000) Signal transduction mechanisms in Caulobacter crescentus development and cell cycle control. FEMS Microbiol Rev 24(2):177–191PubMedCrossRefGoogle Scholar
  57. Jenal U (2009) The role of proteolysis in the Caulobacter crescentus cell cycle and development. Res Microbiol 160(9):687–695PubMedCrossRefGoogle Scholar
  58. Jiang H, Sun SX (2012) Growth of curved and helical bacterial cells. Soft Matter 8(28):7446–7451PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kabsch W, Holmes KC (1995) The actin fold. FASEB J 9(2):167–174PubMedGoogle Scholar
  60. Kelly AJ et al (1998) Cell cycle-dependent transcriptional and proteolytic regulation of FtsZ in Caulobacter. Genes Dev 12(6):880–893PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kiekebusch D et al (2012) Localized dimerization and nucleoid binding drive gradient formation by the bacterial cell division inhibitor MipZ. Mol Cell 46(3):245–259PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kim HJ et al (2000) Partitioning of the linear chromosome during sporulation of Streptomyces coelicolor A3(2) involves an oriC-linked parAB locus. J Bacteriol 182(5):1313–1320PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kim SY et al (2006) Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus. Proc Natl Acad Sci U S A 103(29):10929–10934PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kirkpatrick CL, Viollier PH (2012) Decoding Caulobacter development. FEMS Microbiol Rev 36(1):193–205PubMedCrossRefGoogle Scholar
  65. Klein EA et al (2013) Physiological role of stalk lengthening in Caulobacter crescentus. Commun Int Biol 6(4):e24561CrossRefGoogle Scholar
  66. Koch MK, McHugh CA, Hoiczyk E (2011) BacM, an N-terminally processed bactofilin of Myxococcus xanthus, is crucial for proper cell shape. Mol Microbiol 80(4):1031–1051PubMedPubMedCentralCrossRefGoogle Scholar
  67. Król E et al (2012) Bacillus subtilis SepF binds to the C-terminus of FtsZ. PLoS One 7(8):e43293PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kühn J et al (2009) Bactofilins, a ubiquitous class of cytoskeletal proteins mediating polar localization of a cell wall synthase in Caulobacter crescentus. EMBO J 29(2):1–13Google Scholar
  69. Kuru E et al (2012) In Situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-amino acids. Angew Chem Int Ed Eng 51(50):12519–12523CrossRefGoogle Scholar
  70. Laloux G, Jacobs-Wagner C (2013) Spatiotemporal control of PopZ localization through cell cycle-coupled multimerization. J Cell Biol 201(6):827–841PubMedPubMedCentralCrossRefGoogle Scholar
  71. Laub MT et al (2000) Global analysis of the genetic network controlling a bacterial cell cycle. Sci (New York, N.Y.) 290(5499):2144–2148CrossRefGoogle Scholar
  72. Leonard TA, Butler PJ, Löwe J (2005) Bacterial chromosome segregation: structure and DNA binding of the Soj dimer–a conserved biological switch. EMBO J 24(2):270–282PubMedPubMedCentralCrossRefGoogle Scholar
  73. Lesley JA, Shapiro L (2008) SpoT regulates DnaA stability and initiation of DNA replication in carbon-starved Caulobacter crescentus. J Bacteriol 190(20):6867–6880PubMedPubMedCentralCrossRefGoogle Scholar
  74. Li Z et al (2007) The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. EMBO J 26(22):4694–4708PubMedPubMedCentralCrossRefGoogle Scholar
  75. Li Y et al (2013) FtsZ protofilaments use a hinge-opening mechanism for constrictive force generation. Science (New York, N.Y.) 341(6144):392–395CrossRefGoogle Scholar
  76. Lim HC et al (2014) Evidence for a DNA-relay mechanism in ParABS-mediated chromosome segregation. eLife 3:e02758PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lin L, Thanbichler M (2013) Nucleotide-independent cytoskeletal scaffolds in bacteria. Cytoskeleton (Hoboken, NJ) 70(8):409–423CrossRefGoogle Scholar
  78. Liu J-L (2010) Intracellular compartmentation of CTP synthase in Drosophila. J Genet Genom Yi chuan xue bao 37(5):281–296CrossRefGoogle Scholar
  79. Long CW, Levitzki A, Koshland DE (1970) The subunit structure and subunit interactions of cytidine Triphosphate synthetase. J Biol Chem 245(1):80–87PubMedGoogle Scholar
  80. Lu C, Reedy M, Erickson HP (2000) Straight and curved conformations of FtsZ are regulated by GTP hydrolysis. J Bacteriol 182(1):164–170PubMedPubMedCentralCrossRefGoogle Scholar
  81. Ma X, Margolin W (1999) Genetic and functional analyses of the conserved C-terminal core domain of Escherichia coli FtsZ. J Bacteriol 181(24):7531–7544PubMedPubMedCentralGoogle Scholar
  82. Ma X et al (1997) Interactions between heterologous FtsA and FtsZ proteins at the FtsZ ring. J Bacteriol 179(21):6788–6797PubMedPubMedCentralCrossRefGoogle Scholar
  83. Margolin W (2005) FtsZ and the division of prokaryotic cells and organelles. Nat Rev Mol Cell Biol 6(11):862–871PubMedPubMedCentralCrossRefGoogle Scholar
  84. McGrath PT et al (2007) High-throughput identification of transcription start sites, conserved promoter motifs and predicted regulons. Nat Biotechnol 25(5):584–592PubMedCrossRefGoogle Scholar
  85. Meier EL, Goley ED (2014) Form and function of the bacterial cytokinetic ring. Curr Opin Cell Biol 26:19–27PubMedCrossRefGoogle Scholar
  86. Mierzejewska J, Jagura-Burdzy G (2012) Prokaryotic ParA-ParB-parS system links bacterial chromosome segregation with the cell cycle. Plasmid 67(1):1–14PubMedCrossRefGoogle Scholar
  87. Mohl DA, Gober JW (1997) Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus. Cell 88(5):675–684PubMedGoogle Scholar
  88. Mohl DA, Easter J, Gober JW (2001) The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus. Mol Microbiol 42(3):741–755PubMedCrossRefGoogle Scholar
  89. Noree C et al (2010) Identification of novel filament-forming proteins in Saccharomyces cerevisiae and Drosophila melanogaster. J Cell Biol 190(4):541–551PubMedPubMedCentralCrossRefGoogle Scholar
  90. Noree C et al (2014) Common regulatory control of CTP synthase enzyme activity and filament formation. Mol Biol Cell 25(15):2282–2290PubMedPubMedCentralCrossRefGoogle Scholar
  91. Osawa M, Erickson HP (2011) Inside-out Z rings--constriction with and without GTP hydrolysis. Mol Microbiol 81(2):571–579PubMedPubMedCentralCrossRefGoogle Scholar
  92. Osawa M, Anderson DE, Erickson HP (2008) Reconstitution of contractile FtsZ rings in liposomes. Science (New York, NY) 320(5877):792–794CrossRefGoogle Scholar
  93. Osawa M, Anderson DE, Erickson HP (2009) Curved FtsZ protofilaments generate bending forces on liposome membranes. EMBO J 28(22):3476–3484PubMedPubMedCentralCrossRefGoogle Scholar
  94. Persat A, Stone HA, Gitai Z (2014) The curved shape of Caulobacter crescentus enhances surface colonization in flow. Nat Commun 5:3824PubMedPubMedCentralCrossRefGoogle Scholar
  95. Pichoff S, Lutkenhaus J (2007) Overview of cell shape: cytoskeletons shape bacterial cells. Curr Opin Microbiol 10(6):601–605PubMedPubMedCentralCrossRefGoogle Scholar
  96. Ptacin JL et al (2010) A spindle-like apparatus guides bacterial chromosome segregation. Nature 12(8):791–798Google Scholar
  97. Ptacin JL et al (2014) Bacterial scaffold directs pole-specific centromere segregation. Proc Natl Acad Sci 111(19):E2046–E2055PubMedPubMedCentralCrossRefGoogle Scholar
  98. Quardokus EM, Brun YV (2002) DNA replication initiation is required for mid-cell positioning of FtsZ rings in Caulobacter crescentus. Mol Microbiol 45(3):605–616PubMedCrossRefGoogle Scholar
  99. Quardokus E, Din N, Brun YV (1996) Cell cycle regulation and cell type-specific localization of the FtsZ division initiation protein in Caulobacter. Proc Natl Acad Sci U S A 93(13):6314–6319PubMedPubMedCentralCrossRefGoogle Scholar
  100. Quardokus EM, Din N, Brun YV (2001) Cell cycle and positional constraints on FtsZ localization and the initiation of cell division in Caulobacter crescentus. Mol Microbiol 39(4):949–959PubMedCrossRefGoogle Scholar
  101. Radhakrishnan SK, Pritchard S, Viollier PH (2010) Coupling prokaryotic cell fate and division control with a bifunctional and oscillating oxidoreductase homolog. Dev Cell 18(1):90–101PubMedCrossRefGoogle Scholar
  102. Ringgaard S et al (2009) Movement and equipositioning of plasmids by ParA filament disassembly. Proc Natl Acad Sci 106(46):19369–19374PubMedPubMedCentralCrossRefGoogle Scholar
  103. Saint-Dic D et al (2006) A parA homolog selectively influences positioning of the large chromosome origin in Vibrio cholerae. J Bacteriol 188(15):5626–5631PubMedPubMedCentralCrossRefGoogle Scholar
  104. Schofield WB, Lim HC, Jacobs-Wagner C (2010) Cell cycle coordination and regulation of bacterial chromosome segregation dynamics by polarly localized proteins. EMBO J 29(18):3068–3081PubMedPubMedCentralCrossRefGoogle Scholar
  105. Schrader JM et al (2014) The coding and noncoding architecture of the Caulobacter crescentus genome. PLoS Genet 10(7):1004463CrossRefGoogle Scholar
  106. Shaevitz JW, Gitai Z (2010) The structure and function of bacterial actin homologs. Cold Spring Harb Perspect Biol 2(9):a000364PubMedPubMedCentralCrossRefGoogle Scholar
  107. Shapiro L, Agabian-Keshishian N, Bendis I (1971) Bacterial differentiation. Science (New York, N.Y.) 173(4000):884–892CrossRefGoogle Scholar
  108. Shebelut CW, Jensen RB, Gitai Z (2009) Growth conditions regulate the requirements for Caulobacter chromosome segregation. J Bacteriol 191(3):1097–1100PubMedCrossRefGoogle Scholar
  109. Shebelut CW et al (2010) Caulobacter chromosome segregation is an ordered multistep process. Proc Natl Acad Sci 107(32):14194–14198PubMedPubMedCentralCrossRefGoogle Scholar
  110. Si F et al (2013) Organization of FtsZ filaments in the bacterial division ring measured from polarized fluorescence microscopy. Biophys J 105(9):1976–1986PubMedPubMedCentralCrossRefGoogle Scholar
  111. Sliusarenko O et al (2011) High-throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics. Mol Microbiol 80(3):612–627PubMedPubMedCentralCrossRefGoogle Scholar
  112. Stove JL, Stanier RY (1962) Cellular differentiation in stalked bacteria. Nature 196:1189–1192CrossRefGoogle Scholar
  113. Stricker J, Erickson HP (2003) In vivo characterization of Escherichia coli ftsZ mutants: effects on Z-ring structure and function. J Bacteriol 185(16):4796–4805PubMedPubMedCentralCrossRefGoogle Scholar
  114. Sundararajan K et al (2015) The bacterial tubulin FtsZ requires its intrinsicallydisordered linker to direct robust cell wallconstruction. Nat Commun 6:7281PubMedPubMedCentralCrossRefGoogle Scholar
  115. Swulius MT et al (2011) Biochemical and biophysical research communications. Biochem Biophys Res Commun 407(4):650–655PubMedPubMedCentralCrossRefGoogle Scholar
  116. Szwedziak P et al (2014) Architecture of the ring formed by the tubulin homologue FtsZ in bacterial cell division. eLife 3:e04601PubMedPubMedCentralCrossRefGoogle Scholar
  117. Takacs CN et al (2010) MreB Drives De Novo Rod Morphogenesis in Caulobacter crescentus via remodeling of the cell wall. J Bacteriol 192(6):1671–1684PubMedCrossRefGoogle Scholar
  118. Thanbichler M, Shapiro L (2006) MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter. Cell 126(1):147–162PubMedCrossRefGoogle Scholar
  119. Toro E et al (2008) Caulobacter requires a dedicated mechanism to initiate chromosome segregation. Proc Natl Acad Sci 105(40):15435–15440PubMedPubMedCentralCrossRefGoogle Scholar
  120. van den Elzen PJ et al (1983) Structure and regulation of gene expression of a Clo DF13 plasmid DNA region involved in plasmid segregation and incompatibility. Nucl Acids Res 11(24):8791–8808PubMedPubMedCentralCrossRefGoogle Scholar
  121. van den Ent F et al (2014) Bacterial actin MreB forms antiparallel double filaments. eLife 3:e02634PubMedPubMedCentralGoogle Scholar
  122. Vasa S et al (2015) β-Helical architecture of cytoskeletal bactofilin filaments revealed by solid-state NMR. Proc Natl Acad Sci 112(2):E127–E136PubMedCrossRefGoogle Scholar
  123. Vaughan S et al (2004) Molecular evolution of FtsZ protein sequences encoded within the genomes of archaea, bacteria, and eukaryota. J Mol Evol 58(1):19–29PubMedCrossRefGoogle Scholar
  124. Viollier PH et al (2004) Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc Natl Acad Sci U S A 101(25):9257–9262PubMedPubMedCentralCrossRefGoogle Scholar
  125. Wagner JK, Brun YV (2007) Out on a limb: how the Caulobacter stalk can boost the study of bacterial cell shape. Mol Microbiol 64(1):28–33PubMedCrossRefGoogle Scholar
  126. Wagner JK, Galvani CD, Brun YV (2005) Caulobacter crescentus requires RodA and MreB for stalk synthesis and prevention of ectopic pole formation. J Bacteriol 187(2):544–553PubMedPubMedCentralCrossRefGoogle Scholar
  127. Wang X et al (1997) Analysis of the interaction of FtsZ with itself, GTP, and FtsA. J Bacteriol 179(17):5551–5559PubMedPubMedCentralCrossRefGoogle Scholar
  128. Wang Y, Jones BD, Brun YV (2001) A set of ftsZ mutants blocked at different stages of cell division in Caulobacter. Mol Microbiol 40(2):347–360PubMedCrossRefGoogle Scholar
  129. Wang SCE, West L, Shapiro L (2006) The bifunctional FtsK protein mediates chromosome partitioning and cell division in Caulobacter. J Bacteriol 188(4):1497–1508PubMedPubMedCentralCrossRefGoogle Scholar
  130. Werner JN, Gitai Z (2010) High-throughput screening of bacterial protein localization. Methods Enzymol 471:185–204PubMedPubMedCentralCrossRefGoogle Scholar
  131. White CL, Kitich A, Gober JW (2010) Positioning cell wall synthetic complexes by the bacterial morphogenetic proteins MreB and MreD. Mol Microbiol 76(3):616–633PubMedCrossRefGoogle Scholar
  132. Williams B et al (2014) ClpXP and ClpAP proteolytic activity on divisome substrates is differentially regulated following the Caulobacter asymmetric cell division. Mol Microbiol 93(5):853–866PubMedPubMedCentralCrossRefGoogle Scholar
  133. Yakhnina AA, Gitai Z (2012) The small protein MbiA interacts with MreB and modulates cell shape in Caulobacter crescentus. Mol Microbiol 85(6):1090–1104PubMedPubMedCentralCrossRefGoogle Scholar
  134. Zhou B et al (2015) The global regulatory architecture of transcription during the Caulobacter cell cycle. PLoS Genet 11(1):e1004831PubMedPubMedCentralCrossRefGoogle Scholar
  135. Zuckerman DM et al (2015) The bactofilin cytoskeleton protein BacM of Myxococcus xanthus forms an extended β-sheet structure likely mediated by hydrophobic interactions. PLoS One 10(3):e0121074PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Biological ChemistryJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations