Advertisement

Synthesis Strategies and Emerging Catalytic Applications of Siliceous Materials with Hierarchically Ordered Porosity

  • Jean-Philippe Dacquin
  • Carmen Ciotonea
  • Sébastien Royer
Chapter

Abstract

Materials with hierarchical porosity are a current exciting area in materials chemistry and are attractive for many applications such as photonics, catalysis, adsorption/desorption, drug delivery… This review highlights the parallel development of the mesostructuring and macrostructuring routes to synthesize siliceous materials with highly controlled porosity. A particular focus is given on the combination of surfactant/colloidal dual templating which constitutes a powerful method to shape the textural/morphological properties of the siliceous materials at the meso- and macroscale. Nano-engineering of the structuring agents and the study of their interaction with the silica precursor (with the help of theoretical simulations) are presented. Strategies to improve diffusion of species within the hierarchical porous networks are proposed and put into perspectives. Besides, this chapter will also highlight some of the recent applications of functionalized 3D ordered macroporous–mesoporous silica materials in heterogeneous catalysis . Selected applications like biofuel synthesis, volatile organic compound removal, and oxidation reactions are examined. The impact of hierarchical materials on the catalytic performance is compared with mono-modal pore size materials.

Keywords

Porous silica Hierarchical porosity Dual-templating Polymer spheres Surfactant Heterogeneous catalysis 

References

  1. 1.
    Oliver S, Kuperman A, Coombs N, Lough A, Ozin GA (1995) Lamellar aluminophosphates with surface patterns that mimic diatom and radiolarian microskeletons. Nature 378:47–50CrossRefGoogle Scholar
  2. 2.
    Yanagisawa T, Shimizu T, Kuroda K, Kato C (1990) The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. Bull Chem Soc Jpn 63:988–992CrossRefGoogle Scholar
  3. 3.
    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KDC, Chu TW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenke JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114–27:10834–10843CrossRefGoogle Scholar
  4. 4.
    Velev OD, Jede TA, Lobo RF, Lenhoff AM (1997) Porous silica via colloidal crystallization. Nature 389:447–448CrossRefGoogle Scholar
  5. 5.
    Holland BT, Blanford CF, Do T, Stein A (1999) Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites. Chem Mater 11–3:795–805CrossRefGoogle Scholar
  6. 6.
    Dickey FH (1949) The preparation of specific adsorbents. Proc Natl Acad Sci 35–5:227–229CrossRefGoogle Scholar
  7. 7.
    Monnier A, Schüth F, Huo Q, Kumar D, Margolese D, R. Maxwell S, Stucky GD, Krishnamurty M, Petroff P, Firouzi A, Janicke M, Chmelka BF (1993) Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Sci New Ser 261–5126:1299–1303Google Scholar
  8. 8.
    Huo Q, Margolese DI, Ciesla U, Feng P, Gier TE, Seger P, Leon R, Petroff PM, Shüth F, Sucky GD (1994) Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 386:317–321CrossRefGoogle Scholar
  9. 9.
    Bagshaw SA, Prouzet E, Pinnavaia TJ (1995) Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science 269:1242–1244CrossRefGoogle Scholar
  10. 10.
    Tanev PT, Pinnavaia TJ (1996) Mesoporous silica molecular sieves prepared by ionic and neutral surfactant templating: a comparison of physical properties. Chem Mater 8–8:2068–2079CrossRefGoogle Scholar
  11. 11.
    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552CrossRefGoogle Scholar
  12. 12.
    Wan Y, Zhao D (2007) On the controllable soft-templating approach to mesoporous silicates. Chem Rev 107:2821–2860CrossRefGoogle Scholar
  13. 13.
    Kleitz F, Choi SH, Ryoo R (2003) Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem Commun 2136–2137Google Scholar
  14. 14.
    Atluri R, Hedin N, Garcia-Bennett AE (2009) Nonsurfactant supramolecular synthesis of ordered mesoporous silica. J Am Chem Soc 131–9:3189–3191CrossRefGoogle Scholar
  15. 15.
    Benamor T, Vidal L, Lebeau B, Marichal C (2012) Influence of synthesis parameters on the physico-chemical characteristics of SBA-15 type ordered mesoporous silica. Microporous Mesoporous Mater 153:100–114CrossRefGoogle Scholar
  16. 16.
    Galarneau A, Cambon H, Di Renzo F, Ryoo R, Choi M, Fajula F (2003) Microporosity and connections between pores in SBA-15 mesostructured silicas as a function of the temperature of synthesis. New J Chem 27:73–79CrossRefGoogle Scholar
  17. 17.
    Choi M, Heo W, Kleitz F, Ryoo R (2003) Facile synthesis of high quality mesoporous SBA-15 with enhanced control of the porous network connectivity and wall thickness. Electronic Chem. Commun. 12:1340–1341CrossRefGoogle Scholar
  18. 18.
    H Lee, Kim JH, Stucky GD, Shi Y, Pak C, Kim JM (2010) Morphology-selective synthesis of mesoporous SBA-15 particles over micrometer, submicrometer and nanometer scales. J Mater Chem 20:8483–8487Google Scholar
  19. 19.
    Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120:6024–6036CrossRefGoogle Scholar
  20. 20.
    Ravikovitch PI, Neimark AV (2001) Characterization of micro- and mesoporosity in SBA-15 materials from adsorption data by the NLDFT method. J Phys Chem B 105:6817–6823CrossRefGoogle Scholar
  21. 21.
    Fan J, Yu C, Wang L, Tu B, Zhao D, Sakamoto Y, Terasaki O (2001) Mesotunnels on the silica wall of ordered SBA-15 to generate three-dimensional large-pore mesoporous networks. J Am Chem Soc 123:12113–12114CrossRefGoogle Scholar
  22. 22.
    Liu J, Zhang X, Han Y, Xiao FS (2002) Direct observation of nanorange ordered microporosity within mesoporous molecular sieves. Chem Mater 14:2536–2540CrossRefGoogle Scholar
  23. 23.
    Fulvio PF, Pikus S, Jaroniec M (2005) Tailoring properties of SBA-15 materials by controlling conditions of hydrothermal synthesis. J Mater Chem 15:5049–5053CrossRefGoogle Scholar
  24. 24.
    Kim TW, Ryoo R, Kruk M, Gierszal KP, Jaroniec M, Kamiya S, Terasaki O (2004) Tailoring the pore structure of SBA-16 silica molecular sieve through the use of copolymer blends and control of synthesis temperature and time. J Phys Chem B 108:11480–11489CrossRefGoogle Scholar
  25. 25.
    Kruk M, Jaronie M (1999) A unified interpretation of high-temperature pore size expansion processes in MCM-41 mesoporous silicas. J Phys Chem B 103:4590–4598CrossRefGoogle Scholar
  26. 26.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712CrossRefGoogle Scholar
  27. 27.
    Schmidt-Winkel P, Lukens Jr WW, Zhao D, Yang P, Chmelka BF, Stucky GD (1999) Mesocellular siliceous foams with uniformly sized cells and windows. J Am Chem Soc 121:254–255Google Scholar
  28. 28.
    Johansson EM, Córdoba JM, Odénet M (2009) Synthesis and characterization of large mesoporous silica SBA-15 sheets with ordered accessible 18 nm pores. Mater Lett 63:2129–2131CrossRefGoogle Scholar
  29. 29.
    Schmidt-Winkel P, Glinka CJ, Stucky GD (2000) Microemulsion templates for mesoporous silica. Langmuir 16:356–361CrossRefGoogle Scholar
  30. 30.
    Boissière C, Martines MAU, Tokumoto M, Larbot A, Prouzet E (2003) Mechanisms of pore size control in MSU-X mesoporous silica. Chem Mater 15:509–515CrossRefGoogle Scholar
  31. 31.
    Sun J, Zhang H, Ma D, Chen Y, Bao X, Klein-Hoffmann A, Pfänderb N, Su DS (2005) Alkanes-assisted low temperature formation of highly ordered SBA-15 with large cylindrical mesopores. Chem Commun 2343–2345Google Scholar
  32. 32.
    Zhang H, Sun J, Ma D, Weinberg G, Su DS, Bao X (2006) Engineered complex emulsion system toward modulating the pore length and morphological architecture of mesoporous silicas. J Phys Chem B 110:25908–25915CrossRefGoogle Scholar
  33. 33.
    Kruk M, Cao L (2007) Pore size tailoring in large-pore SBA-15 silica synthesized in the presence of hexane. Langmuir 23:7247–7254CrossRefGoogle Scholar
  34. 34.
    Yi J, Kruk M (2015) Pluronic-P123-templated synthesis of silica with cubic Ia3d structure in the presence of micelle swelling agent. Langmuir 31:7623–7632CrossRefGoogle Scholar
  35. 35.
    Van Grieken R, Martínez F, Morales G, Martín A (2013) Nafion-modified large-pore silicas for the catalytic acylation of anisole with acetic anhydride. Ind Eng Chem Res 52:10145–10151CrossRefGoogle Scholar
  36. 36.
    Zubrzycki R, Ressler T (2015) Influence of pore size of SBA-15 on activity and selectivity of H3 [PMo12O40] supported on tailored SBA-15. Microporous Mesoporous Mater 214:8–14CrossRefGoogle Scholar
  37. 37.
    Templin M, Franck A, Du Chesne A, Leist H, Zhang Y, Ulrich R, Schadler V, Wiesner U (1997) Organically modified aluminosilicate mesostructures from block copolymer phases. Science 278:1795–1798CrossRefGoogle Scholar
  38. 38.
    Deng Y, Yu T, Wan Y, Shi Y, Meng Y, Gu D, Zhang L, Huang Y, Liu C, Wu X, Zhao D (2007) Ordered mesoporous silicas and carbons with large accessible pores templated from amphiphilic diblock copolymer poly(ethylene oxide)b–polystyrene. J Am Chem Soc 129:1690CrossRefGoogle Scholar
  39. 39.
    Wei J, Wang H, Deng Y, Sun Z, Shi L, Tu B, Luqman M, Zhao D (2011) Solvent evaporation induced aggregating assembly approach to three-dimensional ordered mesoporous silica with ultralarge accessible mesopores. J Am Chem Soc 133:20369–20377CrossRefGoogle Scholar
  40. 40.
    Bloch E, Llewellyn PL, Phan T, Bertin D, Hornebec V (2009) On defining a simple empirical relationship to predict the pore size of mesoporous silicas prepared from PEO-b-PS diblock copolymers. Chem Mater 21:48–55CrossRefGoogle Scholar
  41. 41.
    Lokupitiya HN, Jones A, Reid B, Guldin S, Stefik M (2016) Ordered mesoporous to macroporous oxides with tunable isomorphic architectures: solution criteria for persistent micelle templates. Chem Mater 28:1653–1667CrossRefGoogle Scholar
  42. 42.
    Studart AR, Gonzenbach UT, Tervoort E, Gauckler LJ (2006) Processing routes to macroporous ceramics: a review. J Am Ceram Soc 89:1771–1789CrossRefGoogle Scholar
  43. 43.
    Ohji T, Fukushima M (2012) Macro-porous ceramics: processing and properties. Int Mater Rev 57:115–151CrossRefGoogle Scholar
  44. 44.
    Zaki A, Xu J, Stoclet G, Casale S, Dacquin JP, Granger P (2015) Tunable hierarchical porous silica materials using hydrothermal sedimentation-aggregation technique 208:140–151Google Scholar
  45. 45.
    Ozin GA, Yang SM (2001) The race for the photonic chip: colloidal crystal assembly in silicon wafers. Adv Funct Mater 11–2:95–104CrossRefGoogle Scholar
  46. 46.
    Joannopoulos JD, Villeneuve PR, Fan S (1997) Photonic crystals: putting a new twist on light. Nature 386:143–149CrossRefGoogle Scholar
  47. 47.
    Marlow F, Muldarisnur Sharifi P, Brinkmann R, Mendive C (2009) Opals: status and prospects. Angew Chem Int Ed 48:6212–6233CrossRefGoogle Scholar
  48. 48.
    Cong H, Yu B, Tang J, Li Z, Liu X (2013) Current status and future developments in preparation and application of colloidal crystals. Chem Soc Rev 42:7774–7800CrossRefGoogle Scholar
  49. 49.
    Stein A (2001) Sphere templating methods for periodic porous solids. Microporous Mesoporous Mater 44–45:227–239CrossRefGoogle Scholar
  50. 50.
    Velev OD, Jede TA, Lobo RF, Lenhoff AM (1998) Microstructured porous silica obtained via colloidal crystal templates. Chem Mater 10:3597–3602CrossRefGoogle Scholar
  51. 51.
    Abdullah M, Iskandar F, Shibamoto S, Ogi T, Okuyama K (2004) Preparation of oxide particles with ordered macropores by colloidal templating and spray pyrolysis. Acta Mater 52:5151–5156CrossRefGoogle Scholar
  52. 52.
    Cho YS, Yi GR, Chung YS, Park SB, Yang SM (2007) Complex colloidal microclusters from aerosol droplets. Langmuir 23:12079–12085CrossRefGoogle Scholar
  53. 53.
    Cao Y, Wang Y, Zhu Y, Chen H, Li Z, Ding J, Chi Y (2006) Fabrication of anatase titania inverse opal films using polystyrene templates. Superlattices Microstruct 40:155–160CrossRefGoogle Scholar
  54. 54.
    Wijnhoven JEGJ, Vos WL (1998) Preparation of photonic crystals made of air spheres in titania. Science 80:802–804CrossRefGoogle Scholar
  55. 55.
    Sadakane M, Ueda W (2016) Three dimensionally ordered macroporous (3DOM) perovskites mixed metal oxides. Perovskites and related mixed oxides: concepts and applications, vol 1. Wiley, pp 113–138Google Scholar
  56. 56.
    Stein A, Rchroden RC (2001) Colloidal crystal templating of three-dimensionally ordered macroporous solids: materials for photonics and beyond. Curr Opin Solid State Mater Sci 5:553–564CrossRefGoogle Scholar
  57. 57.
    Vaudreuil S, Bousmina M, Kaliaguine S, Bonneviot L (2001) Synthesis of macrostructured silica by sedimentation-aggregation. Adv Mater 13:1310–1312CrossRefGoogle Scholar
  58. 58.
    Vaudreuil S, Bousmina M, Kaliaguine S, Bonneviot L (2001) Preparation of macrostructured metal oxides by sedimentation-agregation. Microporous Mesoporous Mater 44–45:249–258CrossRefGoogle Scholar
  59. 59.
    Oh CG, Baek YY, Ihm SK (2005) Synthesis of skeletal-structured biporous silicate powders through microcoloidal crystal templating. Adv Mater 17–3:270–273CrossRefGoogle Scholar
  60. 60.
    Su BL, Leonard A, Yuan ZY (2005) Highly ordered mesoporous CMI-n materials and hierarchically structured meso–macroporous compositions. CR Chim 8:713–726CrossRefGoogle Scholar
  61. 61.
    Yuan ZY, Su BL (2006) Insights into hierarchically meso–macroporous structured materials. J Mater Chem 16:663–677CrossRefGoogle Scholar
  62. 62.
    Yang XY, Li Y, Lemaire A, Yu JG, Su BL (2009) Hierarchically structured functional materials: Synthesis strategies for multimodal porous networks. Pure Appl Chem 81:2265–2307CrossRefGoogle Scholar
  63. 63.
    Boissiere C, Grosso D, Chaumonnot A, Nicole L, Sanchez C (2010) Aerosol route to functional nanostructured inorganic and hybrid porous materials. Adv Mater 23:599–623CrossRefGoogle Scholar
  64. 64.
    Yang XY, Leonard A, Lemaire A, Tian G, Su BL (2011) Self-formation phenomenon to hierarchically structured porous materials: design, synthesis, formation mechanism and applications. Chem Commun 47:2763–2786CrossRefGoogle Scholar
  65. 65.
    Petkovitch ND, Stein A (2013) Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating. Chem Soc Rev 42:3271–3739Google Scholar
  66. 66.
    Colombo P, Vakifahmetoglu C, Costacurta S (2010) Fabrication of ceramic components with hierarchical porosity. J Mater Sci 45:5425–5455CrossRefGoogle Scholar
  67. 67.
    Göltner CG, Henke S, Weissenberger MC, Antonietti M (1998) Mesoporous silica from lyotropic liquid crystal polymer templates. Angew Chem Int Ed 37–5:613–614CrossRefGoogle Scholar
  68. 68.
    Yang P, Deng T, Zhao D, Feng P, Pine D, Chmelka BF, Whitesides GM, Stucky GD (1998) Hierarchically ordered oxides. Science 282:2244–2246CrossRefGoogle Scholar
  69. 69.
    Sen T, Tiddy GJT, Casci JL, Anderson MW (2003) One-pot synthesis of hierarchically ordered porous-silica materials with three orders of length scale. Angew Chem Int Ed 42:4649–4653CrossRefGoogle Scholar
  70. 70.
    Subramanian G, Manoharan VN, Thorne JD, Pine DJ (1999) Ordered macroporous materials by colloidal assembly: a possible route to photonic bandgap materials. Adv Mater 11–15:1261–1265CrossRefGoogle Scholar
  71. 71.
    Feng P, Bu X, Pine DJ (2000) Control of pore sizes in mesoporous silica templated by liquid crystals in block copolymer-cosurfactant-water systems. Langmuir 16:5304–5310CrossRefGoogle Scholar
  72. 72.
    Sen T, Tiddy GJT, Casci JL, Anderson MW (2004) Synthesis and characterization of hierarchically ordered porous silica materials. Chem Mater 16:2044–2054CrossRefGoogle Scholar
  73. 73.
    Lebeau B, Fowler CE, Mann S, Farcet C, Charleux B, Sanchez C (2000) Synthesis of hierarchically ordered dye-functionalised mesoporous silica with macroporous architecture by dual templating 10:2105–2108Google Scholar
  74. 74.
    Yang Z, Qi K, Rong J, Wang L, Liu Z, Yang Y (2001) Template synthesis of 3-D bi-modal ordered porous silica. Chin Sci Bull 46:1785–1789CrossRefGoogle Scholar
  75. 75.
    Wang Z, Stein A (2008) Morphology control of carbon, silica, and carbon/silica nanocomposites: from 3D ordered macro-/mesoporous monoliths to shaped mesoporous particles. Chem Mater 20:1029–1040CrossRefGoogle Scholar
  76. 76.
    WeiJ Wang H, Deng Y, Sun Z, Shi L, Tu B, Luqman M, Zhao D (2011) Solvent evaporation induced aggregating assembly approach to three-dimensional ordered mesoporous silica with ultralarge accessible mesopores. J Am Chem Soc 133:20369–20377CrossRefGoogle Scholar
  77. 77.
    Loiola AR, Da Silva LRD, Cubillas P, Anderson MW (2008) Synthesis and characterization of hierarchical porous materials incorporating a cubic mesoporous phase. J Mater Chem 18:4985–4993CrossRefGoogle Scholar
  78. 78.
    Li F, Wang Z, Ergang NS, Fyfe CA, Stein A (2007) Controlling the shape and alignment of mesopores by confinement in colloidal crystals: designer pathways to silica monoliths with hierarchical porosity. Langmuir 23:3996–4004CrossRefGoogle Scholar
  79. 79.
    El-Safty SA, Hanaoka T (2003) Monolithic nanostructured silicate family templated by lyotropic liquid-crystalline nonionic surfactant mesophases. Chem Mater 15–15:2892–2902CrossRefGoogle Scholar
  80. 80.
    Holland BT, Blanford CF, Do T, Stein A (1999) Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites. Chem Mater 11:795–805CrossRefGoogle Scholar
  81. 81.
    Yun JS, Seong MY, Ihm SK (2008) The synthesis of MCM-41 with different macropore morphologies: Residual volume- and skeletal-structure. J Phys Chem Solids 69:1129–1132CrossRefGoogle Scholar
  82. 82.
    Yun JS, Ihm S (2008) Synthesis of mesoporous SBA-15 having macropores by dual-templating method. J Phys Chem Solids 69:1133–1135CrossRefGoogle Scholar
  83. 83.
    Kamegawa T, Suzuki N, Che M, Yamashi H (2011) Synthesis and unique catalytic performance of single-site Ti-containing hierarchical macroporous silica with mesoporous frameworks. Langmuir 27:2873–2879CrossRefGoogle Scholar
  84. 84.
    Yang H, Denga J, Xie S, Jiang Y, Dai H, Au CT (2015) Au/MnOx/3DOM SiO2: highly active catalysts for toluene oxidation. Appl Catal A 507:139–148CrossRefGoogle Scholar
  85. 85.
    Haruta M (2005) Catalysis: Gold rush. Nature 437:1098–1099CrossRefGoogle Scholar
  86. 86.
    Hutchings GJ (2005) Catalysis by gold. Catal Today 100:55–61CrossRefGoogle Scholar
  87. 87.
    Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0°C. Chem Lett 16:405–408CrossRefGoogle Scholar
  88. 88.
    Hutchings GJ (1985) Vapour phase hydrochlorination of acetylene: correlation of catalytic activity of supported metal chloride catalysts. J Catal 96:292–295CrossRefGoogle Scholar
  89. 89.
    Parlett CMA, Isaacs MA, Beaumont SK, Bingham LM, Hondow NS, Wilson K, Lee AF (2015) Spatially orthogonal chemical functionalization of a hierarchical pore network for catalytic cascade reactions. Nat Mater Lett 1–6Google Scholar
  90. 90.
    Dhainaut J, Dacquin JP, Lee AF, Wilson K (2010) Hierarchical macroporous-mesoporous SBA-15 sulfonic acid catalysts for biodiesel synthesis. Green Chem 12:296–303CrossRefGoogle Scholar
  91. 91.
    Wainwright SG, Parlett CMA, Blackley RA, Zhouc W, Lee AF, Wilson K, Bruce DW (2013) True liquid crystal templating of SBA-15 with reduced microporosity. Microporous Mesoporous Mater 172:112–117CrossRefGoogle Scholar
  92. 92.
    Narasimharao K, Lee AF, Wilson K (2007) Catalysts in production of biodiesel: a review. J Bio Mater Bioenergy 1:19Google Scholar
  93. 93.
    Sivasamy A, Cheah KY, Fornasiero P, Kemausuor F, Zinovievand S, Miertus S (2009) Catalytic applications in the production of biodiesel from vegetable oils. ChemSusChem 2:278–300CrossRefGoogle Scholar
  94. 94.
    Shah P, Ramaswamy AV, Lazar K, Ramaswamy V (2004) Synthesis and characterization of tin oxide-modified mesoporous SBA-15 molecular sieves and catalytic activity in transesterification reaction. Appl Catal A 1–2:239–248CrossRefGoogle Scholar
  95. 95.
    Dacquin JP, Lee AF, Pirez C, Wilson K (2012) Pore-expanded SBA-15 sulfonic acid silicas for biodiesel synthesis. Chem Commun 48:212–214CrossRefGoogle Scholar
  96. 96.
    Pirez C, Caderon JM, Dacquin JP, Lee AF, Wilson K (2012) Tunable KIT-6 mesoporous sulfonic acid catalysts for fatty acid esterification. ACS Catal 2–8:1607–1614CrossRefGoogle Scholar
  97. 97.
    Khodakov AY, Chu W, Fongarland P (2007) Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev 107:1692–1744CrossRefGoogle Scholar
  98. 98.
    Koo HM, Phu TT, Yi GR, Shin CH, Chung CH Bae JW (2016) Effect of the ordered meso– macroporous structure of Co/SiO2 on the enhanced activity of hydrogenation of CO to hydrocarbons. Catal Sci Technol 6:4221–4231Google Scholar
  99. 99.
    Cho YS, Kim YK, Kim SH, Lim DC, Lee JG, Baek YK, Yi GR (2014) Spherical meso macroporous silica particles by emulsion-assisted dual-templating. Mater Express 4(2):91–104CrossRefGoogle Scholar
  100. 100.
    Witoon T, Chareonpanich M (2012) Synthesis of hierarchical meso-macroporous silica monolith using chitosan as biotemplate and its application as polyethyleneimine support for CO2 capture. Mater Lett 81:181–184CrossRefGoogle Scholar
  101. 101.
    Soler-Illiaa GJ de AA, Sanchez C, Lebeau B, Patarin J (2002) Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. 102:4093–4138Google Scholar
  102. 102.
    Sakamoto Y, Diaz I, Terasaki O, Zhao D, Perez-Pariente J, Kim JM, Stucky GD (2002) Three-dimensional cubic mesoporous structures of SBA-12 and related materials by electron crystallography. J Phys Chem B 106:3118–3123CrossRefGoogle Scholar
  103. 103.
    Kleitz F, Bérubé F, Guillet-Nicolas R, Yang CM, Thommes M (2010) Probing adsorption, pore condensation, and hysteresis behavior of pure fluids in three-dimensional cubic mesoporous KIT-6 silica. J Phys Chem C 114:9344–9355CrossRefGoogle Scholar
  104. 104.
    Xin C, Zhao N, Zhan H, Xiao F, Wei W, Sun Y (2014) Phase transition of silica in the TMB-P123-H2O-TEOS quadrucomponent system: a feasible route to different mesostructured materials. J Colloid Interface Sci 433:176–182CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jean-Philippe Dacquin
    • 1
  • Carmen Ciotonea
    • 1
  • Sébastien Royer
    • 1
  1. 1.Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du SolideLilleFrance

Personalised recommendations