Sequences of Orthopairs Given by Refinements of Coverings

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10147)

Abstract

In this paper we consider sequences of orthopairs given by refinements of coverings and partitions of a finite universe. While operations among orthopairs can be fruitfully interpreted by connectives of three-valued logics, we investigate the algebraic structures that are the counterpart of operations among sequences of orthopairs.

Keywords

Orthopairs Forests Many-valued algebraic structures Gödel algebras 

References

  1. 1.
    Aguzzoli, S., Boffa, S., Ciucci, D., Gerla, B.: Refinements of Orthopairs and IUML-algebras. In: Flores, V., et al. (eds.) IJCRS 2016. LNCS (LNAI), vol. 9920, pp. 87–96. Springer, Heidelberg (2016). doi:10.1007/978-3-319-47160-0_8 CrossRefGoogle Scholar
  2. 2.
    Aguzzoli, S., Flaminio, T., Marchioni, E.: Finite Forests. Their Algebras and Logics (submitted)Google Scholar
  3. 3.
    Aguzzoli, S., Cabrer, L., Marra, V.: MV-algebras freely generated by finite Kleene algebras. Algebra Univers. 70, 245–270 (2013)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Banerjee, M., Chakraborty, K.: Algebras from rough sets. In: Pal, S., Skowron, A., Polkowski, L. (eds.) Rough-Neural Computing, pp. 157–188. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Belolahvek, R., Sklenar, V., Zacpal, J.: Formal concept analysis with hierarchically ordered attributes. Int. J. Gen. Syst. 1–12 (2004)Google Scholar
  6. 6.
    Bianchi, M.: A temporal semantics for nilpotent minimum logic. Int. J. Approx. Reason. 55(1, part 4), 391–401 (2014)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Cignoli, R.: Injective de Morgan and Kleene algebras. Proc. Am. Math. Soc. 47(2), 269–278 (1975). doi:10.1090/S0002-9939-1975-0357259-4 MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Ciucci, D.: Orthopairs: a simple and widely used way to model uncertainty. Fundam. Inform. 108(3–4), 287–304 (2011)MathSciNetMATHGoogle Scholar
  9. 9.
    Ciucci, D., Dubois, D.: Three-valued logics, uncertainty management and rough sets. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets XVII. LNCS, vol. 8375, pp. 1–32. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54756-0_1 CrossRefGoogle Scholar
  10. 10.
    Comer, S.D.: On connections between information systems, rough sets, and algebraic logic. In: Algebraic Methods in Logic and Computer Science, pp. 117–124. Banach Center Publications, no. 28 (1993)Google Scholar
  11. 11.
    Csajbók, Z.E.: Approximation of sets based on partial covering. In: Peters, J.F., Skowron, A., Ramanna, S., Suraj, Z., Wang, X. (eds.) Transactions on Rough Sets XVI. LNCS, vol. 7736, pp. 144–220. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36505-8_9 CrossRefGoogle Scholar
  12. 12.
    Metcalfe, G., Montagna, F.: Substructural fuzzy logics. J. Symb. Log. 72(3), 834–864 (2007)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Università dell’ InsubriaVareseItaly

Personalised recommendations