A System for Fuzzy Granulation of OWL Ontologies

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10147)

Abstract

In this paper, we describe a preliminary version of Granul O, a system for building a granular view of individuals over an OWL ontology. The system applies granular computing techniques based on fuzzy clustering and relies on SPARQL for querying the given ontology and Fuzzy OWL 2 for representing the produced granular view. The system has been applied on a benchmark ontology in the touristic domain.

Notes

Acknowledgments

This work was partially funded by the Università degli Studi di Bari “Aldo Moro” under the IDEA Giovani Ricercatori 2011 grant “Dealing with Vague Knowledge in Ontology Refinement”.

References

  1. 1.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation and Applications, 2nd edn. Cambridge University Press, Cambridge (2007)MATHGoogle Scholar
  2. 2.
    Bargiela, A., Pedrycz, W.: Granular Computing: An Introduction. Springer, Heidelberg (2003)CrossRefMATHGoogle Scholar
  3. 3.
    Bobillo, F., Straccia, U.: fuzzyDL: an expressive fuzzy description logic reasoner. In: FUZZ-IEEE 2008, Proceedings of IEEE International Conference on Fuzzy Systems, Hong Kong, China, pp. 923–930. IEEE (2008)Google Scholar
  4. 4.
    Bobillo, F., Straccia, U.: Representing fuzzy ontologies in OWL 2. In: FUZZ-IEEE 2010, Proceedings of IEEE International Conference on Fuzzy Systems, Barcelona, Spain, pp. 1–6. IEEE (2010)Google Scholar
  5. 5.
    Dubois, D., Prade, H.: Fuzzy cardinality and the modeling of imprecise quantification. Fuzzy Sets Syst. 16(3), 199–230 (1985)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Lisi, F.A., Straccia, U.: Learning in description logics with fuzzy concrete domains. Fundamenta Informaticae 140(3–4), 373–391 (2015)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Lisi, F.A., Mencar, C.: Towards Fuzzy Granulation in OWL Ontologies. In: Proceedings of the 30th Italian Conference on Computational Logic (CILC 2015), vol. 1459, pp. 144–158. CEUR Workshop Proceedings, Genova, Italy (2015)Google Scholar
  8. 8.
    Liu, Y., Kerre, E.E.: An overview of fuzzy quantifiers. (I). Interpretations. Fuzzy Sets Syst. 95(1), 1–21 (1998)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Sanchez, D., Tettamanzi, A.G.: Fuzzy quantification in fuzzy description logics. In: Sanchez, E. (ed.) Fuzzy Logic and the Semantic Web, Capturing Intelligence, vol. 1, pp. 135–159. Elsevier, Amsterdam (2006)CrossRefGoogle Scholar
  10. 10.
    Straccia, U.: Reasoning within fuzzy description logics. J. Artif. Intell. Res. 14, 137–166 (2001)MathSciNetMATHGoogle Scholar
  11. 11.
    Straccia, U.: Description logics with fuzzy concrete domains. In: UAI 2005, Proceedings of the 21st Conference in Uncertainty in Artificial Intelligence, Edinburgh, Scotland, 26–29 July 2005, pp. 559–567. AUAI Press (2005)Google Scholar
  12. 12.
    Straccia, U.: Foundations of Fuzzy Logic and Semantic Web Languages. CRC Studies in Informatics Series. Chapman & Hall, New York (2013)MATHGoogle Scholar
  13. 13.
    Zadeh, L.: From computing with numbers to computing with words. From manipulation of measurements to manipulation of perceptions. IEEE Trans. Circ. Syst. I: Fundam. Theory Appl. 46(1), 105–119 (1999)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Zadeh, L.A.: Is there a need for fuzzy logic? Inf. Sci. 178(13), 2751–2779 (2008)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Dipartimento di Informatica, Centro Interdipartimentale di Logica e ApplicazioniUniversità degli Studi di BariAldo MoroItaly

Personalised recommendations