Second Screen User Profiling and Multi-level Smart Recommendations in the Context of Social TVs

  • Angelos ValsamisEmail author
  • Alexandros Psychas
  • Fotis Aisopos
  • Andreas Menychtas
  • Theodora Varvarigou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10108)


In the context of Social TV, the increasing popularity of first and second screen users, interacting and posting content online, illustrates new business opportunities and related technical challenges, in order to enrich user experience on such environments. SAM (Socializing Around Media) project uses Social Media-connected infrastructure to deal with the aforementioned challenges, providing intelligent user context management models and mechanisms capturing social patterns, to apply collaborative filtering techniques and personalized recommendations towards this direction. This paper presents the Context Management mechanism of SAM, running in a Social TV environment to provide smart recommendations for first and second screen content. Work presented is evaluated using real movie rating dataset found online, to validate the SAM’s approach in terms of effectiveness as well as efficiency.


Second screen Social TV Context management Recommendations 



This work has been supported by the SAM project and funded from the European Union’s 7th Framework Programme for research, technological development and demonstration under grant agreement no 611312.


  1. 1.
    Socialising Around Media (SAM) Project: Dynamic Social and Media Content Syndication for 2nd Screen.
  2. 2.
    Cesar, P., Bulterman, D.C.A., Jansen, A.,J.: Usages of the secondary screen in an interactive television environment: control, enrich, share, and transfer television content. In: Tscheligi, M., Obrist, M., Lugmayr, A. (eds.) EuroITV 2008. LNCS, vol. 5066, pp. 168–177. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-69478-6_22 CrossRefGoogle Scholar
  3. 3.
    Giglietto, F., Selva, D.: Second screen and participation: a content analysis on a full season dataset of tweets. J. Commun. 64(2), 260–277 (2014)CrossRefGoogle Scholar
  4. 4.
    Geerts, D., et al.: In front of and behind the second screen: viewer and producer perspectives on a companion app. In: Proceedings of the 2014 ACM International Conference on Interactive Experiences for TV and Online Video. ACM (2014)Google Scholar
  5. 5.
    Demovic, L., et al.: Movie recommendation based on graph traversal algorithms. In: 2013 24th International Workshop on Database and Expert Systems Applications (DEXA). IEEE (2013)Google Scholar
  6. 6.
    Menychtas, A., Tomás, D., Tiemann, M., Santzaridou, C., Psychas, A., Kyriazis, D., Vidagany, J.V., Campbell, S.: Dynamic social and media content syndication for second screen. Int. J. Vir. Communities Soc. Networking (IJVCSN) 7(2), 50–69 (2015)Google Scholar
  7. 7.
    Santzaridou, C., Menychtas, A., Psychas, A., Varvarigou, T.: Context management and analysis for social TV platforms. eChallenges e-2015 (2015)Google Scholar
  8. 8.
    Barragáns-Martínez, A.B., et al.: A hybrid content-based and item-based collaborative filtering approach to recommend TV programs enhanced with singular value decomposition. Inform. Sci. 180(22), 4290–4311 (2010)Google Scholar
  9. 9.
    Andrade, M.T., Almeida, F.: Novel hybrid approach to content recommendation based on predicted profiles. In: Ubiquitous Intelligence and Computing, 2013 IEEE 10th International Conference on and 10th International Conference on Autonomic and Trusted Computing (UIC/ATC). IEEE (2013)Google Scholar
  10. 10.
    Lai, C.-F., et al.: CPRS: a cloud-based program recommendation system for digital TV platforms. Future Gener. Comput. Syst. 27(6), 823–835 (2011)Google Scholar
  11. 11.
    Chang, J.-H., et al.: 3PRS: a personalized popular program recommendation system for digital TV for P2P social networks. Multimedia Tools Appl. 47(1), 31–48 (2010)Google Scholar
  12. 12.
    Sánchez-Mirabal, P.A., Torres, Y.R., Alvarado, S.H., Gutiérrez, Y., Montoyo, A., Muñoz, R.: UMCC_DLSI: sentiment analysis in twitter using polarity Lexicons and tweet similarity. In: Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), Dublin, Ireland, pp. 727–731Google Scholar
  13. 13.
    Gutierrez, Y., Tomas, D., Fernandez, J.: Benefits of using ranking skip-gram techniques for opinion mining approaches. In: eChallenges e-2015 Conference. IEEE (2015)Google Scholar
  14. 14.
    Tserpes, K., Aisopos, F., Kyriazis, D., Varvarigou, T.: Service selection decision support in the internet of services. In: Altmann, J., Rana, O.F. (eds.) GECON 2010. LNCS, vol. 6296, pp. 16–33. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15681-6_2 CrossRefGoogle Scholar
  15. 15.
    Harper, F.M., Konstan, J.A.: The MovieLens datasets: history and context. ACM Trans. Interact. Intell. Syst. (TiiS) 5(4), 19 (2015). Article 19Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Angelos Valsamis
    • 1
    Email author
  • Alexandros Psychas
    • 1
  • Fotis Aisopos
    • 1
  • Andreas Menychtas
    • 1
  • Theodora Varvarigou
    • 1
  1. 1.Distributed, Knowledge and Media Systems GroupNational Technical University of AthensAthensGreece

Personalised recommendations