Closing the Reading Gap with Virtual Maze Environments

  • Lisa Gabel
  • Evelyn Johnson
  • Brett E. Shelton
  • Jui-Long Hung
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10108)


The purpose of the proposed project is to develop and validate a virtual Hebb-Williams (vHW) maze task for use as a low-cost, time-efficient, and easy-to-use assessment for the early detection of children at risk for reading impairment. The vHW maze offers the potential to serve as a reliable, non-language based predictor of reading difficulty, which can improve early identification and intervention efforts. Unlike current screening measures of reading impairment, the vHW maze could be administered in the classroom, with a fully integrated analytical system. With the successful attainment of this project, the vHW maze task will fill important gaps in early identification screeners by examining a broader range of cognitive processes associated with reading and enhancing our understanding of factors underlying reading impairment. This paper comprises the proposed work and significance while highlighting previous findings related to reading impairments and virtual maze environments.


Reading impairment Special education Educational technology Virtual environments 


  1. Adlof, S.M., Catts, H.W., Lee, J.: Kindergarten predictors of second versus eighth grade reading comprehension impairments. J. Learn. Disabil. 43, 332–345 (2010)CrossRefGoogle Scholar
  2. Baker, R., Yacef, K.: The state of educational data mining in 2009: a review and future visions. J. Educ. Data Min. 1(1), 3–17 (2009). Google Scholar
  3. Catts, H.W., Adlof, S.M., Weismer, S.: Language deficits in poor comprehenders: a case for the simple view of reading. J. Speech Lang. Hearing Res. 49(2), 278–293 (2006)CrossRefGoogle Scholar
  4. Compton, D.L., Miller, A.C., Elleman, A.M., Steacy, L.M.: Have we forsaken reading theory in the name of quick fix interventions for children with reading disability? Sci. Stud. Reading 18(1), 55–73 (2014). doi: 10.1080/10888438.2013.836200 CrossRefGoogle Scholar
  5. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: The KDD process for extracting useful knowledge from volumes of data. Commun. ACM 39(11), 27–34 (1996)CrossRefGoogle Scholar
  6. Ferrer, E., Shaywitz, B.A., Holahan, J.M., Marchione, K., Shaywitz, S.E.: Uncoupling of reading and IQ over time: empirical evidence for a definition of dyslexia. Psychol. Sci. 21(1), 93–101 (2015). doi: 10.1177/0956797609354084 CrossRefGoogle Scholar
  7. Frijters, J.C., Lovett, M.W., Steinbach, K.A., Wolf, M., Sevcik, R.A., Morris, R.D.: Neurocognitive predictors of reading outcomes for children with reading disabilities. J. Learn. Disabil. 44(2), 150–166 (2011). doi: 10.1177/0022219410391185 CrossRefGoogle Scholar
  8. Gabel, L.A., Manglani, M., Escalona, N., Cysner, J., Hamilton, R., Pfaffmann, J., Johnson, E.: Translating dyslexia across species. Annals of Dyslexia (2016)Google Scholar
  9. Gough, P., Tunmer, W.: Decoding, reading, and reading disability. Remedial Special Educ. 7, 6–10 (1986)CrossRefGoogle Scholar
  10. Hawkins, S., He, H., Williams, G., Baxter, R.: Outlier detection using replicator neural networks. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2002. LNCS, vol. 2454, pp. 170–180. Springer, Heidelberg (2002). doi: 10.1007/3-540-46145-0_17 CrossRefGoogle Scholar
  11. Hebb, D.O., Williams, K.: A method of rating animal intelligence. J. Gen. Psychol. 34, 59–65 (1946)CrossRefGoogle Scholar
  12. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)CrossRefGoogle Scholar
  13. Jenkins, J., Hudson, R.F., Johnson, E.S.: Screening for service delivery in an RTI framework: candidate measures. School Psychol. Rev. 36(4), 582–601 (2007)Google Scholar
  14. Knorr, E.M., Ng, R.T., Tucakov, V.: Distance-based outliers: algorithms and applications. VLDB J. Int. J. Very Large Data Bases 8(3–4), 237–253 (2000). doi: 10.1007/s007780050006 CrossRefGoogle Scholar
  15. Kriegel, H.P., Kröger, P., Schubert, E., Zimek, A.: Interpreting and unifying outlier scores. In: Proceedings of the 2011 SIAM International Conference on Data Mining, pp. 13–24, Mesa, AZ, April 2011Google Scholar
  16. Lazarevic, A., Kumar, V.: Feature bagging for outlier detection. In: Proceedings of 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 157–166, August 2005Google Scholar
  17. Meunier, M., Saint-Marc, M., Destrade, C.: The Hebb-Williams test to assess recovery of learning after limbic lesions in mice. Physiol. Behav. 37(6), 909–913 (1986)CrossRefGoogle Scholar
  18. Nguyen, H.V., Ang, H.H., Gopalkrishnan, V.: Mining outliers with ensemble of heterogeneous detectors on random subspaces. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5981, pp. 368–383. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-12026-8_29 CrossRefGoogle Scholar
  19. Pennington, B.F., Santerre-Lemmon, L., Rosenberg, J., MacDonald, B., Boada, R., Friend, A., et al.: Individual prediction of dyslexia by single vs. multiple deficit models. J. Abnorm. Psychol. 121(1), 212–224 (2012)CrossRefGoogle Scholar
  20. Rabinovitch, M.S., Rosvold, H.E.: A closed-field intelligence test for rats. Can. J. Psychol. 5(3), 122–128 (1951)CrossRefGoogle Scholar
  21. Romero, C., Ventura, S.: Educational data mining: A review of the state of the art. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 40(6), 601–618 (2010)CrossRefGoogle Scholar
  22. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)CrossRefMATHGoogle Scholar
  23. Shelton, B.E., Hung, J., Lowenthal, P.: Predicting student success by modeling student interaction in asynchronous online courses. IEEE Trans. Learn. Technol., 8 pages (under review)Google Scholar
  24. Shelton, B.E., Hung, J., Baughman, S.: Online graduate teacher education: establishing an EKG for student success intervention. Technol. Knowl. Learn. 21(1), 21–32 (2015). doi: 10.1007/s10758-015-9254-8 CrossRefGoogle Scholar
  25. Shore, D.I., Stanford, L., MacInnes, W.J., Klein, R.M., Brown, R.E.: Of mice and men: virtual Hebb-Williams mazes permit comparison of spatial learning across species. Cogn. Affect Behav. Neurosci. 1(1), 83–89 (2001)CrossRefGoogle Scholar
  26. Spencer, M., Quinn, J.M., Wagner, R.K.: Specific reading comprehension disability: major problem, myth, or misnomer? Learn. Disabil. Res. Pract. 29(1), 3–9 (2014)CrossRefGoogle Scholar
  27. Torgesen, J.K.: Avoiding the devastating downward spiral: the evidence that early intervention prevents reading failure. Am. Educ. 28, 6–19 (2004). Reprinted in the 56th Annual Commemorative Booklet of the International Dyslexia Association, November 2005Google Scholar
  28. U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2015 English Language Arts AssessmentGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Lisa Gabel
    • 1
  • Evelyn Johnson
    • 2
  • Brett E. Shelton
    • 2
  • Jui-Long Hung
    • 2
  1. 1.Lafayette CollegeEastonUSA
  2. 2.Boise State UniversityBoiseUSA

Personalised recommendations