Advertisement

Experiences in WordNet Visualization with Labeled Graph Databases

  • Enrico Giacinto Caldarola
  • Antonio Picariello
  • Antonio M. Rinaldi
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 631)

Abstract

Data and Information Visualization is becoming strategic for the exploration and explanation of large data sets due to the great impact that data have from a human perspective. The visualization is the closer phase to the users within the data life cycle’s phases, thus, an effective, efficient and impressive representation of the analyzed data may result as important as the analytic process itself. In this paper, we present our experiences in importing, querying and visualizing graph databases taking one of the most spread lexical database as case study: WordNet. After having defined a meta-model to translate WordNet entities into nodes and arcs inside a labeled oriented graph, we try to define some criteria to simplify the large-scale visualization of WordNet graph, providing some examples and considerations which arise. Eventually, we suggest a new visualization strategy for WordNet synonyms rings by exploiting the features and concepts behind tag clouds.

Keywords

Graph database Big Data NoSQL Data visualization WordNet Neo4J 

References

  1. 1.
    Friendly, M., Denis, D.J.: Milestones in the history of thematic cartography, statistical graphics, and data visualization (2001). http://www.datavis.ca/milestones
  2. 2.
    Munzner, T.: Process and pitfalls in writing information visualization research papers. In: Kerren, A., Stasko, J.T., Fekete, J.-D., North, C. (eds.) Information Visualization. LNCS, vol. 4950, pp. 134–153. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-70956-5_6 CrossRefGoogle Scholar
  3. 3.
    Caldarola, E.G., Picariello, A., Castelluccia, D.: Modern enterprises in the bubble: why big data matters. ACM SIGSOFT Softw. Eng. Notes 40, 1–4 (2015)CrossRefGoogle Scholar
  4. 4.
    Caldarola, E.G., Sacco, M., Terkaj, W.: Big data: the current wave front of the Tsunami. ACS Appl. Comput. Sci. 10, 7–18 (2014)Google Scholar
  5. 5.
    Caldarola, E.G., Rinaldi, A.M.: Big data: a survey - the new paradigms, methodologies and tools. In: Proceedings of the 4th International Conference on Data Management Technologies and Applications, pp. 362–370 (2015)Google Scholar
  6. 6.
    Bederson, B.B., Shneiderman, B.: The Craft of Information Visualization: Readings and Reflections. Morgan Kaufmann, Burlington (2003)Google Scholar
  7. 7.
    Spence, R.: Information visualization, vol. 1. Springer, Heidelberg (2001)Google Scholar
  8. 8.
    Mazza, R.: Introduction to Information Visualization. Springer Science & Business Media, Heidelberg (2009)Google Scholar
  9. 9.
    Fayyad, U.M., Wierse, A., Grinstein, G.G.: Information Visualization in Data Mining and Knowledge Discovery. Morgan Kaufmann, Burlington (2002)Google Scholar
  10. 10.
    Ware, C.: Information Visualization: Perception for Design. Elsevier, Amsterdam (2012)Google Scholar
  11. 11.
    Cui, W., Qu, H.: A survey on graph visualization. Ph.D. Qualifying Exam (PQE) Report, Computer Science Department, Hong Kong University of Science and Technology, Kowloon, Hong Kong (2007)Google Scholar
  12. 12.
    Tutte, W.T.: How to draw a graph. Proc. Lond. Math. Soc 13, 743–768 (1963)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Purchase, H.: Which aesthetic has the greatest effect on human understanding? In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997). doi: 10.1007/3-540-63938-1_67 CrossRefGoogle Scholar
  14. 14.
    Purchase, H.C., Cohen, R.F., James, M.: Validating graph drawing aesthetics. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 435–446. Springer, Heidelberg (1996). doi: 10.1007/BFb0021827 CrossRefGoogle Scholar
  15. 15.
    Herman, I., Delest, M., Melancon, G.: Tree visualisation and navigation clues for information visualisation. Comput. Graph. Forum 17, 153–165 (1998)CrossRefGoogle Scholar
  16. 16.
    Reingold, E.M., Tilford, J.S.: Tidier drawings of trees. IEEE Trans. Softw. Eng. 17, 223–228 (1981)CrossRefGoogle Scholar
  17. 17.
    Beaun, L., Parent, M.A., Vroomen, L.C.: Cheops: a compact explorer for complex hierarchies. In: Proceedings of the Visualization 1996, pp. 87–92. IEEE (1996)Google Scholar
  18. 18.
    Huang, W., Hong, S.H., Eades, P.: Effects of sociogram drawing conventions and edge crossings in social network visualization. J. Graph Algorithms Appl. 11, 397–429 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wills, G.J.: NicheWorks — interactive visualization of very large graphs. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 403–414. Springer, Heidelberg (1997). doi: 10.1007/3-540-63938-1_85 CrossRefGoogle Scholar
  20. 20.
    Carriere, J., Kazman, R.: Research report. Interacting with huge hierarchies: beyond cone trees. In: Proceedings of the Information Visualization 1995, pp. 74–81. IEEE (1995)Google Scholar
  21. 21.
    Munzner, T.: H3: Laying out large directed graphs in 3D hyperbolic space. In: Proceedings of the IEEE Symposium on Information Visualization 1997, pp. 2–10. IEEE (1997)Google Scholar
  22. 22.
    Eades, P.: A heuristics for graph drawing. Congressus Numerantium 42, 146–160 (1984)MathSciNetGoogle Scholar
  23. 23.
    Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exper. 21, 1129–1164 (1991)CrossRefGoogle Scholar
  24. 24.
    Gansner, E.R., North, S.C.: Improved force-directed layouts. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 364–373. Springer, Heidelberg (1998). doi: 10.1007/3-540-37623-2_28 CrossRefGoogle Scholar
  25. 25.
    Johnson, B., Shneiderman, B.: Tree-maps: a space-filling approach to the visualization of hierarchical information structures. In: Proceedings of the IEEE Conference on Visualization 1991, pp. 284–291. IEEE (1991)Google Scholar
  26. 26.
    Kamps, J., Marx, M.: Visualizing wordnet structure. In: Proceedings of the 1st International Conference on Global WordNet, pp. 182–186 (2002)Google Scholar
  27. 27.
    Collins, C.: Wordnet explorer: applying visualization principles to lexical semantics. Computational Linguistics Group, Department of Computer Science, University of Toronto, Toronto, Ontario, Canada (2006)Google Scholar
  28. 28.
    Collins, C.: DocuBurst: radial space-filling visualization of document content. Technical Report KMDI-TR-2007-1, Knowledge Media Design Institute, University of Toronto (2007)Google Scholar
  29. 29.
    Holzschuher, F., Peinl, R.: Performance of graph query languages: comparison of cypher, gremlin and native access in Neo4j. In: Proceedings of the Joint EDBT/ICDT 2013 Workshops, pp. 195–204. ACM (2013)Google Scholar
  30. 30.
    Webber, J.: A programmatic introduction to Neo4j. In: Proceedings of the 3rd Annual Conference on Systems, Programming, and Applications: Software for Humanity, pp. 217–218. ACM (2012)Google Scholar
  31. 31.
    Robinson, I., Webber, J., Eifrem, E.: Graph Databases. O’Reilly Media Inc., Sebastopol (2013)Google Scholar
  32. 32.
    Fellbaum, C.: Wordnet. The Encyclopedia of Applied Linguistics (1998)Google Scholar
  33. 33.
    Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38, 39–41 (1995)CrossRefGoogle Scholar
  34. 34.
    Rinaldi, A.M.: A content-based approach for document representation and retrieval. In: Proceedings of the Eighth ACM Symposium on Document Engineering, pp. 106–109. ACM (2008)Google Scholar
  35. 35.
    Finlayson, M.A.: MIT Java Wordnet Interface (JWI) User’s Guide, Version 2.2.x (2013)Google Scholar
  36. 36.
    Finlayson, M.A.: Java libraries for accessing the Princeton Wordnet: comparison and evaluation. In: Proceedings of the 7th Global Wordnet Conference, Tartu, Estonia (2014)Google Scholar
  37. 37.
    Van Bruggen, R.: Learning Neo4j. Packt Publishing Ltd., Birmingham (2014)Google Scholar
  38. 38.
    Mathur, A., Dalal, D.: APIARY: A Case for Neo4j? (Equal Experts Labs)Google Scholar
  39. 39.
    Kobourov, S.G.: Spring embedders and force directed graph drawing algorithms. arXiv preprint arXiv:1201.3011 (2012)
  40. 40.
    Albanese, M., Capasso, P., Picariello, A., Rinaldi, A.M.: Information retrieval from the web: an interactive paradigm. In: Candan, K.S., Celentano, A. (eds.) MIS 2005. LNCS, vol. 3665, pp. 17–32. Springer, Heidelberg (2005). doi: 10.1007/11551898_5 CrossRefGoogle Scholar
  41. 41.
    Albanese, M., Maresca, P., Picariello, A., Rinaldi, A.M.: Towards a multimedia ontology system: an approach using TAO_XML. In: DMS, pp. 52–57 (2005)Google Scholar
  42. 42.
    Rinaldi, A.M.: A multimedia ontology model based on linguistic properties and audio-visual features. Inf. Sci. 277, 234–246 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Enrico Giacinto Caldarola
    • 1
    • 2
  • Antonio Picariello
    • 1
  • Antonio M. Rinaldi
    • 1
    • 3
  1. 1.Department of Electrical Engineering and Information TechnologiesUniversity of Naples Federico IINaplesItaly
  2. 2.Institute of Industrial Technologies and Automation, National Research CouncilBariItaly
  3. 3.IKNOS-LAB Intelligent and Knowledge SystemsUniversity of Naples Federico II, LUPTNaplesItaly

Personalised recommendations