Integrating Atlas and Graph Cut Methods for Left Ventricle Segmentation from Cardiac Cine MRI

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10124)


Magnetic Resonance Imaging (MRI) has evolved as a clinical standard-of-care imaging modality for cardiac morphology, function assessment, and guidance of cardiac interventions. All these applications rely on accurate extraction of the myocardial tissue and blood pool from the imaging data. Here we propose a framework for left ventricle (LV) segmentation from cardiac cine MRI. First, we segment the LV blood pool using iterative graph cuts, and subsequently use this information to segment the myocardium. We formulate the segmentation procedure as an energy minimization problem in a graph subject to the shape prior obtained by label propagation from an average atlas using affine registration. The proposed framework has been validated on 30 patient cardiac cine MRI datasets available through the STACOM LV segmentation challenge and yielded fast, robust, and accurate segmentation results.


Blood Pool Segmentation Result Endocardial Border Cine Magnetic Resonance Image Shape Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Petitjean, C., Dacher, J.N.: A review of segmentation methods in short axis cardiac MR images. Med. Image Anal. 15(2), 169–184 (2011)CrossRefGoogle Scholar
  2. 2.
    Iglesias, J.E., Sabuncu, M.R.: Multi-atlas segmentation of biomedical images: a survey. Med. Image Anal. 24(1), 205–219 (2015)CrossRefGoogle Scholar
  3. 3.
    Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)CrossRefGoogle Scholar
  4. 4.
    Grosgeorge, D., Petitjean, C., Dacher, J.N., Ruan, S.: Graph cut segmentation with a statistical shape model in cardiac MRI. Comput. Vis. Image Underst. 117(9), 1027–1035 (2013)CrossRefGoogle Scholar
  5. 5.
    Freedman, D., Zhang, T.: Interactive graph cut based segmentation with shape priors. In: Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 755–762 (2005)Google Scholar
  6. 6.
    Mahapatra, D.: Cardiac image segmentation from cine cardiac MRI using graph cuts and shape priors. J. Digit. Imaging 26(4), 721–730 (2013)CrossRefGoogle Scholar
  7. 7.
    Slabaugh, G., Unal, G.: Graph cuts segmentation using an elliptical shape prior. In: Proceedings - International Conference on Image Processing, ICIP, vol. 2, pp. 1222–1225 (2005)Google Scholar
  8. 8.
    Vu, N., Manjunath, B.S.: Shape prior segmentation of multiple objects with graph cuts. In: 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2008)Google Scholar
  9. 9.
    Kadish, A.H., Bello, D., Finn, J.P., Bonow, R.O., Schaechter, A., Subacius, H., Albert, C., Daubert, J.P., Fonseca, C.G., Goldberger, J.J.: Rationale and design for the defibrillators to reduce risk by magnetic resonance imaging evaluation (determine) trial. J. Cardiovasc. Electrophysiol. 20(9), 982–987 (2009)CrossRefGoogle Scholar
  10. 10.
    Li, B., Liu, Y., Occleshaw, C.J., Cowan, B.R., Young, A.A.: In-line automated tracking for ventricular function with magnetic resonance imaging. JACC: Cardiovasc. Imaging 3(8), 860–866 (2010)Google Scholar
  11. 11.
    Ben-Zikri, Y.K., Linte, C.A.: A robust automated left ventricle region of interest localization technique using a cardiac cine MRI atlas (2016)Google Scholar
  12. 12.
    Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gudbjartsson, H., Patz, S.: The rician distribution of noisy MRI data. Magn. Reson. Med. 34(6), 910–914 (1995)CrossRefGoogle Scholar
  15. 15.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. PAMI 23, 1222–1239 (2001)CrossRefGoogle Scholar
  16. 16.
    Suinesiaputra, A., Cowan, B.R., Al-Agamy, A.O., Elattar, M.A., Ayache, N., Fahmy, A.S., Khalifa, A.M., Medrano-Gracia, P., Jolly, M.P., Kadish, A.H., Lee, D.C., Margeta, J., Warfield, S.K., Young, A.A.: A collaborative resource to build consensus for automated left ventricular segmentation of cardiac MR images. Med. Image Anal. 18(1), 50–62 (2014)CrossRefGoogle Scholar
  17. 17.
    Suinesiaputra, A., et al.: Left ventricular segmentation challenge from cardiac MRI: a collation study. In: Camara, O., Konukoglu, E., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2011. LNCS, vol. 7085, pp. 88–97. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28326-0_9 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Shusil Dangi
    • 1
  • Nathan Cahill
    • 1
    • 3
  • Cristian A. Linte
    • 1
    • 2
  1. 1.Chester F. Carlson Center for Imaging ScienceRochester Institute of TechnologyRochesterUSA
  2. 2.Biomedical EngineeringRochester Institute of TechnologyRochesterUSA
  3. 3.Center for Applied and Computational MathematicsRochester Institute of TechnologyRochesterUSA

Personalised recommendations