Pesticide Degradations, Residues and Environmental Concerns

  • Abdullah Al-Mamun


The profits of universal utilization of pesticides can be evaluated by their presence and fate as persistent organic pollutants in environment. This chapter illustrates an overview of chemical, biological and photo degradation procedures of pesticides in the environmental media and the ultimate fate of degraded products as well as their environmental concerns. Instead of having extensive data on pesticide degradation from regulatory testing agency and research institutions, it is still unclear to predict the exact pathways of pesticide degradation under some specific field conditions. In this chapter, it is reviewed the main technical challenges in doing so and discussed the emergent prospects of identifying pesticide degradation procedures in the field.


Dissolve Organic Matter Ultimate Fate Pesticide Degradation Photo Degradation Public Health Hazard 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C.A. Damalas, Understanding benefits and risks of pesticide use. Sci. Res. Essay 4(10), 945–949 (2009)Google Scholar
  2. 2.
    Food and Agriculture Organization of the United Nations (FAO), FAOSTAT (2012), faostat.fao.orgGoogle Scholar
  3. 3.
    A. Grube, D. Donaldson, T. Kiely, L. Wu, in Pesticides Industry Sales and Usage, ed. by US EPA, Office of Chemical Safety and Pollution Prevention (US EPA Publications warehouse, Washington, DC, 2011).Google Scholar
  4. 4.
    EPA, What is a pesticide? Accessed 16 July 2012
  5. 5.
    A. Agrawal, R.S. Pandey, B. Sharma, Water pollution with special reference to pesticide contamination in India. J. Water Res. Protect. 2, 432–448 (2010)CrossRefGoogle Scholar
  6. 6.
    K. Fenner, S. Canonica, L.P. Wackett, M. Elsner, Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 341(6147), 752–758 (2013)CrossRefGoogle Scholar
  7. 7.
    H. Bartel et al., Wasserwirtschaft in Deutschland. Teil 1, Grundlagen (Umweltbundesamt (UBA), Dessau-Rosslau, 2010)Google Scholar
  8. 8.
    R.J. Gilliom et al., in The Quality of Our Nation’s Waters—Pesticides in the Nation’s Streams and Ground Water, 1992–2001, ed. by U. S. Department of the Interior, U.S. Geological Survey (USGS Publications warehouse, Reston, 2006).Google Scholar
  9. 9.
    S. Huntscha, H. Singer, S. Canonica, R.P. Schwarzenbach, K. Fenner, Environ. Sci. Technol. 42, 5507–5513 (2008)Google Scholar
  10. 10.
    P.B. Kurt-Karakus, C. Teixeira, J. Small, D. Muir, T.F. Bidleman, Environ. Toxicol. Chem. 30, 1539–1548 (2011)CrossRefGoogle Scholar
  11. 11.
    M. Gavrilescu, Review – fate of pesticides in the environment and its bioremediation. Eng. Life Sci. 5(6), 497–526 (2005)CrossRefGoogle Scholar
  12. 12.
    R.C. Kuhard, A.K. Johri, A. Singh, O.P. Ward, in Soil Biology, Applied bioremediation and phytoremediation, ed. by A. A. Singh, O. P. Ward. Bioremediation of pesticide contaminated soils, vol l (Springer, Heidelberg, 2004), pp. 35–54Google Scholar
  13. 13.
    W. Chen, A. Mulchandani, M.A. Deshusses, Environmental biotechnology: challenges and opportunities for chemical engineers. AICHE J. 51, 690–695 (2005)CrossRefGoogle Scholar
  14. 14.
    O.P. Ward, A. Singh, in Soil Biology, Applied bioremediation and phytoremediation, ed. by A. Singh, O. P. Ward. Soil bioremediation and phytoremediation – an overview, vol 1 (Springer, Berlin/Heidelberg, 2004), pp. 1–12Google Scholar
  15. 15.
    Z. Aksu, Application of biosorption for the removal of organic pollutants: a review. Process Biochem. 40, 997–1026 (2005)CrossRefGoogle Scholar
  16. 16.
    R. Atkinson et al., Transformations of pesticides in the atmosphere: a state of the art. Water A S P 115(1–4), 219–243 (1999)CrossRefGoogle Scholar
  17. 17.
    J.J. Kells, C.E. Riek, R.L. Belvins, W.M. Muir, Atrazine dissipation as affected by surface pH and tillage. Weed Sci. 1980(28), 101–104 (1980)Google Scholar
  18. 18.
    A. Moreale, R. van Bladel, Behavior of 2,4-D in Belgian soils. J. Environ. Qual. 1980(9), 627–633 (1980)CrossRefGoogle Scholar
  19. 19.
    S.M. Zhang, D.S. Liu, Z.S. Wang, X.F. Ma, A kinetic model describing the effect of temperature on the loss rate of pesticides in soil. Ecol. Model. 70, 115–126 (1993)CrossRefGoogle Scholar
  20. 20.
    R.-V. Roman, M. Gavrilescu, Transfer Phenomena in Bioprocesses (Dosoftei Press, Iasi, 1997)Google Scholar
  21. 21.
    Y.R. Li. A GIS-aided integrated modeling system for simulating agricultural nonpoint source pollution, Master Thesis, University of Regina, (2001)Google Scholar
  22. 22.
    L.T. Ou, D.H. Gancaiz, W.B. Wheeler, P.S.C. Rao, J.M. Davidson, Influence of soil temperature and soil moisture on degradation and metabolism of carbofuran in soils. J. Environ. Qual. 11, 293–298 (1982)CrossRefGoogle Scholar
  23. 23.
    J. Foght, T. April, K. Biggar, J. Aisabie, Bioremediation of DDT-contaminated soils: a review. Bioremediation J. 5, 225–246 (2001)CrossRefGoogle Scholar
  24. 24.
    V. Becaert, M. Beaulien, J. Gagnon, R. Vielemur, L. Deschenes, R. Samson, Development of a microbial consortium from a contami- nated soil that degrades pentachlorophenol and wood-preserving oil. Bioremediation J. 5, 183–192 (2001)CrossRefGoogle Scholar
  25. 25.
    M. Waldman, Y. Shevah, Biodegradation and leaching of pollutants: monitoring aspects. Pure Appl. Chem. 65, 1595–1603 (1993)CrossRefGoogle Scholar
  26. 26.
    F. Whitford, J. Wolt, H. Nelson, M. Barrett, S. Brichford, R. Turco, Pesticides and Water Quality Principles, Policies and Programs (Purdue University Cooperative Extension Service, West Lafayette, 1995)Google Scholar
  27. 27.
    J.B. Walsh, A feasibility study of bioremediation in a highly organic soil, Master of Science Thesis, Worcester Polytechnic Institute, 1999Google Scholar
  28. 28.
    A. Singh, P.O. Ward, in Soil Biology, Biodegradation and bioremediation, ed. by A. Singh, P. O. Ward. Biotechnology and bioremediation – an overview, vol 2 (Springer, Berlin/Heidelberg, 2004), pp. 1–18Google Scholar
  29. 29.
    E. Diaz, Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. Intern. Microbiol. 7, 173–180 (2004)Google Scholar
  30. 30.
    Boettcher G, Nyer EK, In Situ Treatment Technology, ed. by E. Nyer, et al. In situ bioremediation (CRC Press, Boca Raton, 2001)Google Scholar
  31. 31.
    S. Suthersan, Natural and Enhanced Remediation Systems (CRC Press, Boca Raton, 2001)CrossRefGoogle Scholar
  32. 32.
    J.D. van Hamme, in Soil Biology, Biodegradation and bioremediation, ed. by A. Singh, O. P. Ward. Bioavailability and biodegradation of organic pollutants – a microbial perspective, vol 2 (Springer, Berlin/Heidelberg, 2004), pp. 37–56Google Scholar
  33. 33.
    M. Dua, A. Singh, N. Sethunathan, A. Johri, Biotechnology and bioremediation: successes and limitations. Appl. Microbiol. Biotechnol. 59, 142–152 (2002)Google Scholar
  34. 34.
    G.M. Klecka, in Environmental Exposure from Chemicals, ed. by W. B. Neely, G. E. Blau. Biodegradation (CRC Press, Boca Raton, 1985)Google Scholar
  35. 35.
    L.P. Wackett, C.D. Hershberger, Biocatalysis and Biodegradation: Microbial Transformation of Organic Compounds (ASM Press, Washington DC, 2001)CrossRefGoogle Scholar
  36. 36.
    L. Wackett, M. Sadowsky, B. Martinez, N. Shapir, Biodegradation of atrazine and related s-triazine compounds: from enzymes to field studies. Appl. Microbiol. Biotechnol. 58(1), 39–45 (2002)CrossRefGoogle Scholar
  37. 37.
    B. Jochimsen, S. Lolle, F.R. McSorley, M. Nabi, J. Stougaard, D.L. Zechel, B. Hove-Jensen, Five phosphonate operon gene products as components of a multi-subunit complex of the carbon-phosphorus lyase pathway. Proc. Natl. Acad. Sci. 108(28), 11393–11398 (2011)CrossRefGoogle Scholar
  38. 38.
    T. Zeng, Y.P. Chin, W.A. Arnold, Potential for abiotic reduction of pesticides in prairie pothole porewaters. Environ. Sci. Technol. 46(6), 3177–3187 (2012)CrossRefGoogle Scholar
  39. 39.
    W.B. Neely, in Environmental Exposure from Chemicals, ed. by W. B. Neely, G. E. Blau. Hydrolysis (CRC Press, Boca Raton, 1985)Google Scholar
  40. 40.
    J.C. Xu, J.W. Stucki, J. Wu, J.E. Kostka, G.K. Sims, Fate of atrazine and alachlor in redox-treated ferruginous smectite. Environ. Toxicol. Chem. 20(12), 2717–2724 (2001)CrossRefGoogle Scholar
  41. 41.
    A.R. Loch, K.A. Lippa, D.L. Carlson, Y.P. Chin, S.J. Traina, A.L. Roberts, Nucleophilic aliphatic substitution reactions of propachlor, alachlor, and metolachlor with bisulfide (HS-) and polysulfides (Sn2-). Environ. Sci. Technol. 36(19), 4065–4073 (2002)CrossRefGoogle Scholar
  42. 42.
    K.A. Barrett, M.B. McBride, Oxidative degradation of glyphosate and aminomethylphosphonate by manganese oxide. Environ. Sci. Technol. 39(23), 9223–9228 (2005)CrossRefGoogle Scholar
  43. 43.
    S.J. Larson, P.D. Capel, M.S. Majewski, in Pesticides in Surface Waters – Distribution, Trends, and Governing Factors, ed. by R. J. Gilliom. Series of Pesticides in the hydrologic system, vol 3 (Ann Arbor Press, Chelsea, 1997).Google Scholar
  44. 44.
    W.B. Mills, D.B. Porcella, M.J. Ungs, S.A. Gherini, K.V. Summers, L. Mok, et al., Water Quality Assessments: A Screening Procedure for Toxic and Conventional Pollutants, Parts 1, 2, and 3, EPA-600/f6-82-004a, b, c (US EPA, Washington DC, 1985)Google Scholar
  45. 45.
    H.D. Burrows, L.M. Canle, J.A. Santaballa, S. Steenken, Reaction pathways and mechanisms of photodegradation of pesticides. J. Photochem. Photobiol. B Biol. 67(2), 71 (2002). doi: 10.1016/S1011-1344(02)00277-4 CrossRefGoogle Scholar
  46. 46.
    J. Hoigné, W. Stumm, ed. Reaction rates of processes in natural waters, in Aquatic Chemical Kinetics: Reaction Rates of Processes in Natural Waters (Wiley, New York, 1990). ISBN 978-0-471-51029-1
  47. 47.
    T. Mill, W. Mabey, in Environmental Exposure form Chemicals, ed. by W. B. Neely, G. E. Blau. Photochemical transformations (CRC Press, Boca Raton, 1985)Google Scholar
  48. 48.
    H.L. Ortiz, S.E. Sánchez, G.E. Dantán, G.L. Castrejón. Pesticide biodegradation: mechanisms, genetics and strategies to enhance the process, in Biodegradation – Life of Science, ed. by Dr. R. Chamy (InTech, 2013). doi:  10.5772/56098
  49. 49.
    P. Besse-Hoggan, T. Alekseeva, M. Sancelme, A. Delort, C. Forano, Atrazine biodegradation modulated by clays and clay/humic acid complexes. Environ. Pollut. 157(10), 2837–2844 (2009)CrossRefGoogle Scholar
  50. 50.
    A. Tiktak, J.D. Piiieros Garcet, D.S. de Nie, M. Vanclooster, A. Jones, Assessment of pesticide leaching at the pan-European level using a spatially distribution model. Proceedings of the Diffuse Pollution and Basin Management Conf., Dublin, Aquatic Ecology and Dangerous Substances Section, 17–22 Aug 2003Google Scholar
  51. 51.
    S. Kleineidam, H. Rugner, P. Grathwohl, Desorption kinetics of phenanthrene in aquifer material lacks hysteresis. Environ. Sci. Technol. 38, 4169–4175 (2004)CrossRefGoogle Scholar
  52. 52.
    R.G. Nash, E.H. Woolson, Persistence of Chlorinated Hydrocarbon Insecticides in Soils (American Association for the Advancement of Science, 1967)Google Scholar
  53. 53.
    E.A. Kerle, J.J. Jenkins, P.A. Vogue, Understanding pesticide persistence and mobility for groundwater and surface water protection, Report EM 8561 (Oregon State University Extension Service, Corvallis, 1996Google Scholar
  54. 54.
    B.K. Singh, A. Walker, Microbial degradation of organophosphorus compounds. FEMS Microbiol. Rev. 30(3), 428–471 (2006)CrossRefGoogle Scholar
  55. 55.
    F. Worrall, M. Fernandez-Perez, A. Johnson, F. Flores-Cesperedes, E. Gonzalez-Pradas, Limitations on the role of incorporated organic matter in reducing pesticide leaching. J. Contam. Hydrol. 49, 241–262 (2001)CrossRefGoogle Scholar
  56. 56.
    L.P. Padhye, J.H. Kim, C.H. Huang, Oxidation of dithiocarbamates to yield N-nitrosamines by water disinfection oxidants. Water Res. 47(2), 725–736 (2013)CrossRefGoogle Scholar
  57. 57.
    R.J. Gilliom, J.E. Barbash, C.G. Crawford, P.A. Hamilton, J.D. Martin, N. Nakagaki, L.H. Nowell, J.C. Scott, P.E. Stackelberg, G.P. Thelin, D.M. Wolock, Pesticides in the Nation’s Streams and Ground Water, 1992–2001 (U.S. Geological Survey Circular 1291, 2006), 172 pGoogle Scholar
  58. 58.
    H. Bartel, U. Irmer, Water Resource Management in Germany (Umweltbundesamt (UBA), Dessau-Rosslau, 2010)Google Scholar
  59. 59.
    S. Kilchmann, M. Reinhardt, M. Schürch, D. Traber, Ergebnisse der Grundwasserbeobachtung Schweiz (NAQUA). Zustand und Entwicklung 2004–2006 (Bundesamt für Umwelt (BAFU), Bern, 2009)Google Scholar
  60. 60.
    P.B. Kurt-Karakus, C. Teixeira, J. Small, D. Muir, T.F. Bidleman, Current-use pesticides in Ontario Inland Lakes, precipitation, air and zooplankton samples. Environ. Toxicol. Chem. 30, 1539–1548 (2011)CrossRefGoogle Scholar
  61. 61.
    D.C.G. Muir, C. Teixeira, F. Wania, Empirical and modeling evidence of regional atmospheric transport of current-use pesticides. Environ. Toxicol. Chem. 23, 2421–2432 (2004)CrossRefGoogle Scholar
  62. 62.
    F. Malaguerra, H.-J. Albrechtsen, L. Thorling, P.J. Binning, Pesticides in water supply wells in Zealand, Denmark: a statistical analysis. Sci. Total Environ. 414, 433–444 (2012)CrossRefGoogle Scholar
  63. 63.
    G. Nath, S. Agnihotri, Removal of endosulfan from bitter gourds by home processings. Pesticides 18(8), 13–15 (1984)Google Scholar
  64. 64.
    M. Miyahara, Y. Saito, Effects of the processing steps in tofu production on pesticide residues. J. Agric. Food Chem. 42(2), 369–373 (1994)CrossRefGoogle Scholar
  65. 65.
    A.E. Marei, M.M. Khattab, A.H. Mansee, M.M. Youssef, M.R. Montasser, Analysis and dissipation of deltamethrin in stored wheat and milled fractions. Alex. J. Agric. Res. 16(2), 275–291 (1995)Google Scholar
  66. 66.
    A.A.K. Abou-Arab, Effects of processing and storage of dairy products on lindane residues and metabolites. Food Chem. 64, 467–473 (1999a)CrossRefGoogle Scholar
  67. 67.
    A.A.K. Abou-Arab, Behavior of pesticides in tomatoes during commercial and home preparation. Food Chem. 65, 509–514 (1999b)CrossRefGoogle Scholar
  68. 68.
    V.V. Krishnamurthy, U.S. Sreeramulu, Studies on rice bran and rice bran oil. VI. Pesticides accumulation in the rice bran. Madras Agric. J. 69(12), 820–821 (1982)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Civil and Architectural EngineeringSultan Qaboos UniversityMuscatOman

Personalised recommendations