Advertisement

Large Spatial Competition

  • Matías Núñez
  • Marco Scarsini
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 118)

Abstract

We consider spatial competition when consumers are arbitrarily distributed on a compact metric space. Retailers can choose one of finitely many locations in this space. We focus on symmetric mixed equilibria which exist for any number of retailers. We prove that the distribution of retailers tends to agree with the distribution of the consumers when the number of competitors is large enough. The results are shown to be robust to the introduction of (1) randomness in the number of retailers and (2) different ability of the retailers to attract consumers.

Keywords

Hotelling games Large games Poisson games Valence 

Notes

Acknowledgements

The authors thank Dimitrios Xefteris for useful discussions and the PHC Galilée G15-30 “Location models and applications in economics and political science” for financial support.

Matías Núñez was supported by the center of excellence MME-DII (ANR-11-LBX-0023-01).

Marco Scarsini was partially supported by PRIN 20103S5RN3 and MOE2013-T2-1-158. This author is a member of GNAMPA-INdAM.

References

  1. 1.
    Aoyagi, M., Okabe, A.: Spatial competition of firms in a two-dimensional bounded market. Reg. Sci. Urban Econ. 23 (2), 259–289 (1993). doi:http://dx.doi.org/10.1016/0166-0462(93)90006-Z. http://dx.doi.org/10.1016/0166-0462(93)90006-Z
  2. 2.
    Aragones, E., Palfrey, T.R.: Mixed equilibrium in a Downsian model with a favored candidate. J. Econ. Theory 103 (1), 131–161 (2002). doi:10.1006/jeth.2001.2821. http://dx.doi.org/10.1006/jeth.2001.2821 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aragonès, E., Xefteris, D.: Candidate quality in a Downsian model with a continuous policy space. Games Econ. Behav. 75 (2), 464–480 (2012). doi:10.1016/j.geb.2011.12.008. http://dx.doi.org/10.1016/j.geb.2011.12.008 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Banks, J.S., Duggan, J., Le Breton, M.: Social choice and electoral competition in the general spatial model. J. Econ. Theory 126 (1), 194–234 (2006). doi:10.1016/j.jet.2004.08.001. http://dx.doi.org/10.1016/j.jet.2004.08.001
  5. 5.
    Bernheim, B.D., Slavov, S.N.: A solution concept for majority rule in dynamic settings. Rev. Econ. Stud. 76 (1), 33–62 (2009). doi:10.1111/j.1467-937X.2008.00520.x. http://dx.doi.org/10.1111/j.1467-937X.2008.00520.x MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Calvert, R.L.: Robustness of the multidimensional voting model: candidate motivations, uncertainty, and convergence. Am. J. Pol. Sci. 39 (1), 69–95 (1985)CrossRefGoogle Scholar
  7. 7.
    Crippa, G., Jimenez, C., Pratelli, A.: Optimum and equilibrium in a transport problem with queue penalization effect. Adv. Calc. Var. 2 (3), 207–246 (2009). doi:10.1515/ACV.2009.009. http://dx.doi.org/10.1515/ACV.2009.009 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Downs, A.: An Economic Theory of Democracy. Harper and Row, New York (1957)Google Scholar
  9. 9.
    Dürr, C., Thang, N.K.: Nash equilibria in Voronoi games on graphs. In: European Symposium on Algorithms (2007)CrossRefzbMATHGoogle Scholar
  10. 10.
    Eaton, B.C., Lipsey, R.G.: The principle of minimum differentiation reconsidered: some new developments in the theory of spatial competition. Rev. Econ. Stud. 42 (1), 27–49 (1975). http://www.jstor.org/stable/2296817 CrossRefzbMATHGoogle Scholar
  11. 11.
    Feldmann, R., Mavronicolas, M., Monien, B.: Nash equilibria for voronoi games on transitive graphs. In: Leonardi, S. (ed.) Internet and Network Economics. Lecture Notes in Computer Science, vol. 5929, pp. 280–291. Springer, Berlin, Heidelberg (2009). doi:10.1007/978-3-642-10841-9_26. http://dx.doi.org/10.1007/978-3-642-10841-9_26 CrossRefGoogle Scholar
  12. 12.
    Fournier, G.: General distribution of consumers in pure Hotelling games (2016). https://arxiv.org/abs/1602.04851. arXiv 1602.04851
  13. 13.
    Fournier, G., Scarsini, M.: Hotelling games on networks: existence and efficiency of equilibria (2016). http://dx.doi.org/10.2139/ssrn.2423345. sSRN 2423345
  14. 14.
    Gouret, F., Hollard, G., Rossignol, S.: An empirical analysis of valence in electoral competition. Soc. Choice. Welf. 37 (2), 309–340 (2011). doi:10.1007/s00355-010-0495-0. http://dx.doi.org/10.1007/s00355-010-0495-0 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gur, Y., Saban, D., Stier-Moses, N.E.: The competitive facility location problem in a duopoly. Mimeo (2014)Google Scholar
  16. 16.
    Heijnen, P., Soetevent, A.R.: Price competition on graphs. Technical Report TI 2014-131/VII. Tinbergen Institute (2014). http://ssrn.com/abstract=2504454
  17. 17.
    H&rner, J., Jamison, J.: Hotelling’s spatial model with finitely many consumers. Mimeo (2012)Google Scholar
  18. 18.
    Hotelling, H.: Stability in competition. Econ. J. 39 (153), 41–57 (1929). http://www.jstor.org/stable/2224214 Google Scholar
  19. 19.
    Laster, D., Bennet, P., Geoum, I.: Rational bias in macroeconomic forecasts. Q. J. Econ. 45 (2), 145–186 (1999). doi:10.1007/s00355-010-0495-0. http://dx.doi.org/10.1007/s00355-010-0495-0 Google Scholar
  20. 20.
    Lederer, P.J., Hurter, A.P., Jr.: Competition of firms: discriminatory pricing and location. Econometrica 54 (3), 623–640 (1986). doi:10.2307/1911311. http://dx.doi.org/10.2307/1911311 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Mallozzi, L., Passarelli di Napoli, A.: Optimal transport and a bilevel location-allocation problem. J. Glob. Optim. 1–15 (2015) http://dx.doi.org/10.1007/s10898-015-0347-7
  22. 22.
    Mavronicolas, M., Monien, B., Papadopoulou, V.G., Schoppmann, F.: Voronoi games on cycle graphs. In: Mathematical Foundations of Computer Science, vol. 2008. Lecture Notes in Computer Science, vol. 5162, pp. 503–514. Springer, Berlin (2008). doi:10.1007/978-3-540-85238-4_41. http://dx.doi.org/10.1007/978-3-540-85238-4_41
  23. 23.
    Myerson, R.B.: Population uncertainty and Poisson games. Int. J. Game Theory 27 (3), 375–392 (1998). doi:10.1007/s001820050079. http://dx.doi.org/10.1007/s001820050079 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Myerson, R.B.: Large Poisson games. J. Econ. Theory 94 (1), 7–45 (2000). doi:10.1006/jeth.1998.2453. http://dx.doi.org/10.1006/jeth.1998.2453 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Nuñez, M., Scarsini, M.: Competing over a finite number of locations. Econ. Theory Bull. 4 (2), 125–136 (2016) http://dx.doi.org/10.1007/s40505-015-0068-6 MathSciNetCrossRefGoogle Scholar
  26. 26.
    Osborne, M.J., Pitchik, C.: The nature of equilibrium in a location model. Int. Econ. Rev. 27 (1), 223–237 (1986). doi:10.2307/2526617. http://dx.doi.org/10.2307/2526617 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Ottaviani, M., Sorensen, P.N.: The strategy of professional forecasting. J. Financ. Econ. 81 (2), 441–466 (2006). doi:10.1007/s00355-010-0495-0. http://dx.doi.org/10.1007/s00355-010-0495-0 CrossRefGoogle Scholar
  28. 28.
    Pálv&lgyi, D.: Hotelling on graphs. Mimeo (2011)Google Scholar
  29. 29.
    Pinto, A.A., Almeida, J.P., Parreira, T.: Local market structure in a Hotelling town. J. Dyn. Games 3 (1), 75–100 (2016). doi:10.3934/jdg.2016004. http://dx.doi.org/10.3934/jdg.2016004 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Plott, C.R.: A notion of equilibrium and its possibility under majority rule. Am. Econ. Rev. 57 (4), 787–806 (1967)Google Scholar
  31. 31.
    Suzuki, J.: Land use regulation as a barrier to entry: evidence from the Texas lodging industry. Int. Econ. Rev. 54 (2), 495–523 (2013). doi:10.1111/iere.12004. http://dx.doi.org/10.1007/s00355-010-0495-0 CrossRefGoogle Scholar
  32. 32.
    Tabuchi, T.: Two-stage two-dimensional spatial competition between two firms. Reg. Sci. Urban. Econ. 24 (2), 207–227 (1994). doi:http://dx.doi.org/10.1016/0166-0462(93)02031-W. http://dx.doi.org/10.1016/0166-0462(93)02031-W
  33. 33.
    Xefteris, D.: Multidimensional electoral competition between differentiated candidates. Mimeo, University of Cyprus (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.LAMSADEUniversité Paris DauphineParisFrance
  2. 2.Dipartimento di Economia e FinanzaLUISSRomeItaly

Personalised recommendations