Computer Aided Calibration, Benchmarking and Check-Up of Constitutive Models for Soils. Some Conclusions for Neohypoplasticity

  • Andrzej Niemunis
  • Carlos Eduardo Grandas-Tavera
Chapter

Abstract

A computer aided calibration, benchmarking and testing of constitutive models is presented. A large collection of test data for Karlsruhe sand is used together with the neohypoplastic model as an example. The essential feature of the procedure is an automatic evaluation of the discrepancies between a test and its simulation. They can be minimized by modifications of material constants or used as a benchmark for different models. Apart from the curve-fitting part one may check whether a constitutive model violates the Second Law. For this purpose several specially designed stress loops are tried out. A shake down of all state variables is established. The neohypoplasticity and the barotropic hypoelasticity are used as examples in the thermodynamic tests. In conclusion several modification to neohypoplastic models are presented.

Keywords

Second law Material calibration umat 

References

  1. 1.
    Benedetto, H., Tatsuoka, F., Ishihara, M.: Time dependent shear deformation characteristics of sand and their constitutive modelling. Soils Found. 41, 1–21 (2001)Google Scholar
  2. 2.
    Gudehus, G., Jiang, Y., Liu, M.: Seismo- and thermodynamics of granular solids. Granul. Matter 13, 319–340 (2010)CrossRefGoogle Scholar
  3. 3.
    Houlsby, G.T., Puzrin, A.M.: Principles of Hyperplasticity. Springer, London (2006)MATHGoogle Scholar
  4. 4.
    Hunt, M.L., Zenit, R., Campbell, C.S., Brennen, C.E.: Revisiting the 1954 suspension experiments of R.A. Bagnold. J. Fluid Mech. 452, 1–24 (2002)CrossRefMATHGoogle Scholar
  5. 5.
    Johansson, H., Runesson, K., Larsson, F.: Parameter identification with sensitivity assessment and error computation. GAMM-Mitteilungen 30(2), 430–457 (2007). doi:10.1002/gamm.200790026 MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Johnson, A.: A model for grain flow and debris flow. Technical report 96–728, US Department of the Interior, US Geological Survey, Denver, Colorado (1996)Google Scholar
  7. 7.
    Knittel, L.J.: Fortgesetzte quasi-statische Untersuchungen zur Elastizität von Sand als Grundlage eines neuen hypoplastischen Stoffmodells. Bachelorarbeit, Institut für Boden- und Felsmechanik, Karlsruher Institut für Technologie, September 2014Google Scholar
  8. 8.
    Niemunis, A., Tavera, C.E.G., Wichtmann, T.: Peak stress obliquity in drained and undrained sands. simulations with neohypoplasticity. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 80, pp. 85–114. Springer, Heidelberg (2016). doi:10.1007/978-3-319-23159-4_5 CrossRefGoogle Scholar
  9. 9.
    Niemunis, A., Prada-Sarmiento, L.F., Grandas-Tavera, C.E.: Paraelasticity. Acta Geotech. 6(2), 67–80 (2011)CrossRefGoogle Scholar
  10. 10.
    Osinov, V.A., Chrisopoulos, S., Grandas-Tavera, C.: Vibration-induced stress changes in saturated soil: a high-cycle problem. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 80, pp. 69–84. Springer, Heidelberg (2016). doi:10.1007/978-3-319-23159-4_4 CrossRefGoogle Scholar
  11. 11.
    Prada Sarmiento, L.F.: Paraelastic description of small-strain soil behaivour. Ph.D. thesis, IBF, Karlsruher Institut für Technologie, Nr. 173 (2012)Google Scholar
  12. 12.
    Chrisopoulos, S., Osinov, V.A., Triantafyllidis, T.: Dynamic problem for the deformation of saturated soil in the vicinity of a vibrating pile toe. In: Triantafyllidis, T. (ed.) holistic simulation of geotechnical installation processes. LNACM, vol. 80, pp. 53–67. Springer, Heidelberg (2016). doi:10.1007/978-3-319-23159-4_3 CrossRefGoogle Scholar
  13. 13.
    Wichtmann, T., Niemunis, A., Triantafyllidis, T.: Improved simplified calibration procedure for a high-cycle accumulation model. Soil Dyn. Earthquake Eng. 70, 118–132 (2015)CrossRefGoogle Scholar
  14. 14.
    Wichtmann, T., Triantafyllidis, T.: An experimental data base for the development, calibration and verification of constitutive models for sand with focus to cyclic loading. Part I: tests with monotonic loading and stress cycles. Acta Geotech. 11(4), 739–762 (2016). doi:10.1007/s11440-015-0402-z CrossRefGoogle Scholar
  15. 15.
    Wichtmann, T., Triantafyllidis, T.: An experimental data base for the development, calibration and verification of constitutive models for sand with focus to cyclic loading. Part II: tests with strain cycles and combined loading. Acta Geotech. 11(4), 763–774 (2016). doi:10.1007/s11440-015-0412-x CrossRefGoogle Scholar
  16. 16.
    von Wolffersdorff, P.-A.: Eine neue Version des erweiterten hypoplastischen Stoffgesetzes. Mech. Cohesive Frict. Mater. 1, 251–271 (1993)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Andrzej Niemunis
    • 1
  • Carlos Eduardo Grandas-Tavera
    • 1
  1. 1.Institute of Soil Mechanics and Rock MechanicsKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations