Experimental Investigation of Vibratory Pile Driving in Saturated Sand

  • Jakob Vogelsang
  • Gerhard Huber
  • Theodoros Triantafyllidis
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 82)


An experimental study using half-model tests to investigate the vibro-penetration of piles in saturated sand is presented. In the tests, a model pile with half-circular cross section is penetrated along an observation window by means of a vibrator. The use of a high speed camera and a sophisticated image acquisition system enables the observation of the penetration process with sufficient temporal and spatial resolution. A consistent evaluation of pile head and toe motion is achieved using a combined interpretation of acceleration measurements and Digital Image Correlation (DIC) analysis. The application of DIC to evaluate cyclic soil deformations reveals the relation of typical displacement patterns in the soil and characteristic phases of pile penetration. Pore water pressure measurements at two fixed locations show the dependence of pore water pressure evolution on the penetration mode and soil density. The extensive measurements allow an improved interpretation of the typical penetration modes during vibratory pile driving.


Vibratory pile penetration Pile driving Digital image correlation 


  1. 1.
    Arshad, M.I., Tehrani, F.S., Prezzi, M., Salgado, R.: Experimental study of cone penetration in silica sand using digital image correlation. Géotechnique 64(7), 551–559 (2014)CrossRefGoogle Scholar
  2. 2.
    Chow, F.C.: Field measurements of stress interactions between displacement piles in sand. Ground Eng. 28(6), 36–40 (1995)Google Scholar
  3. 3.
    Chow, F.C., Jardine, R.J., Nauroy, J.F., Brucy, F.: Time-related increases in the shaft capacities of driven piles in sand. Géotechnique 47(2), 353–361 (1997)CrossRefGoogle Scholar
  4. 4.
    Chrisopoulos, S., Vogelsang, J., Triantafyllidis, T.: FE simulation of model tests on vibratory pile driving in saturated sand. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 82, pp. 124–149. Springer, Cham (2017)CrossRefGoogle Scholar
  5. 5.
    Cudmani, R.O., Huber, G., Gudehus, G.: Zyklische und dynamische Penetration nichtbindiger Böden. Workshop “Boden unter fast zyklischer Beanspruchung", Bochum (2000)Google Scholar
  6. 6.
    Cudmani, R.O.: Statische, alternierende und dynamische Penetration in nichtbindigen Böden. Dissertation, Publications of the Institute of Soil Mechanics and Rock Mechanics, vol. 152. University of Karlsruhe (2001)Google Scholar
  7. 7.
    Huber, G.: Vibrationsrammen: Großmaßstäbliche Versuche. Workshop Vibrationsrammen, Karlsruhe (1997)Google Scholar
  8. 8.
    O’Neill, M.W., Vipulanandan, C., Wong, D.: Laboratory modeling of vibro-driven piles. J. Geotech. Eng. 116(8), 1190–1209 (1990)CrossRefGoogle Scholar
  9. 9.
    Rodger, A.A., Littlejohn, G.: A study of vibratory pile driving in granular soils. Géotechnique 30(3), 269–293 (1980)CrossRefGoogle Scholar
  10. 10.
    Savidis, S.A., Aubram, D., Rackwitz, F.: Vibro-injection pile installation in sand: part II - numerical and experimental investigation. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes - Numerical and Physical Modelling, pp. 103–131. Springer, Cham (2015)CrossRefGoogle Scholar
  11. 11.
    SciPy community: SciPy reference guide - release 0.13.0 (2013)Google Scholar
  12. 12.
    Triantafyllidis, Th: Neue Erkenntnisse aus Messungen an tiefen Baugruben am Potsdamer Platz in Berlin. Bautechnik 75(3), 133–154 (1998)CrossRefGoogle Scholar
  13. 13.
    Vennemann, P.: JPIV-software package for particle image velocimetry (2007). http://www.jpiv.vennemann-online.de
  14. 14.
    Vielsack, P., Storz, M.: Dynamics of vibratory pile driving. In: Workshop “Vibrationsrammen", pp. 3–12. Karlsruhe (1997)Google Scholar
  15. 15.
    Viking, K.: The vibratory pile installation technique. In: Holeyman et Rocher-Lacoste, G. (ed.) TRANSVIB 2006, Editions du LCPC, pp. 65–82. Paris (2006)Google Scholar
  16. 16.
    Vogelsang, J., Huber, G., Triantafyllidis, T., Bender, T.: Interpretation of vibratory pile penetration based on digital image correlation. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes - Benchmarks and Simulations, pp. 31–51. Springer, Cham (2016)Google Scholar
  17. 17.
    Vogelsang, J., Huber, G., Triantafyllidis, T.: Stress paths on displacement piles during monotonic and cyclic penetration. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. NNACM, vol. 82, pp. 29–52. Springer, Cham (2017)CrossRefGoogle Scholar
  18. 18.
    Vogelsang, J.: Untersuchungen zu den Mechanismen der Pfahlrammung. Dissertation, Publications of the Institute of Soil Mechanics and Rock Mechanics, Karlsruhe Institute of Technology (2017, submitted)Google Scholar
  19. 19.
    White, D.J., Bolton, M.D.: Displacement and strain paths during plane-strain model pile installation in sand. Géotechnique 54(6), 375–397 (2004)CrossRefGoogle Scholar
  20. 20.
    Wong, D.: Driveability and load transfer characteristics of vibro-driven piles. Dissertation, Department of Civil and Environmental Engineering, University of Houston (1988)Google Scholar
  21. 21.
    Wong, D., O’Neill, M.W., Vipulanandan, C.: Modelling of vibratory pile driving in sand. Int. J. Num. Anal. Methods Geomech. 16, 189–210 (1992)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jakob Vogelsang
    • 1
  • Gerhard Huber
    • 1
  • Theodoros Triantafyllidis
    • 1
  1. 1.Institute of Soil Mechanics and Rock MechanicsKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations